KNN-ID and Neural Nets

KNN, ID Trees, and Neural Nets

Intro to Learning Algorithms

KNN, Decision trees, Neural Nets are all supervised learning algorithms

Their general goal = make accurate predictions about unknown data after being trained on known
data.

Data comes in form of examples with the general form:
X4, .. X, are also known as features, inputs or dimensions Yy is the output or class label.

Both x; and ys can be discrete (taking on specific values) {0, 1}
or continuous (taking on a range of values) [0, 1]

In training we are given (X4, ... Xp, Y) tuples. In testing (classification), we are given only (Xq,...
Xn) and the goal is to predict y with high accuracy.

Training error is the classification error measured using training data to test._
Testing error is classification error on data not seen in the training phase._

K Nearest Neighbors
1-NN

. Given an unknown point, pick the closest 1 neighbor by some distance measure.
Class of unknown is the 1-nearest neighbor's label.

k-NN
. Given an unknown, pick the k closest neighbors by some distance function.
. Class of unknown is the mode of the k-nearest neighbor's labels.
. ks usually an odd number to facilitate tie breaking.

How to draw 1-NN decision boundaries
Decision boundaries, lines on which it is equally likely to be in any of the classes.

1. Examine the region where you think decision boundaries should occur.

2. Find oppositely labeled points (+/-)

3. Draw bisectors. (use pencil)

4. Extend and join all bisectors. Erase extraneously extended lines.

5. Remember to draw boundaries to the edge of the graph and indicate it with arrows! (a very
common mistake).

6. Your 1-NN boundaries generally should have sharp edges and corners (otherwise, you are doing

something wrong or drawing boundaries for a higher k-nn.)

Distance Functions
How to determine what points are "nearest”. Here are some standard Distance functions:

Euclidean Distance

Manhattan Distance (Block distance)
- Sum of distances in each dimension

Hamming Distance

- Sum of differences in each dimension
I(x,y) = O if identical, 1 if different.

KNN-ID and Neural Nets

Cosine Similarity

- Used in Text classification; words are
dimensions; documents are vectors of words;
vector component is 1 if word i exist.

(Optional) How to Weigh Dimensions Differently
In Euclidean distance all dimensions are treated the same. But in practice not dimensions are equally
important or useful!

For example. Suppose we represent documents as vectors of words.

Consider the task of classifying documents related to "Red Sox". If all words are equal, then the word
"the" weighs the same as the word "Sox". But almost every english document has the word "the".
But only sports related documents have the word "Sox". So we want k-nn distance metrics to weight
meaningful words like sox more than functional words like "the".

For text classification, a weight scheme used to make some dimensions (words) more important than
others is known as: TF-1DF

Here:

tf: Words that occur frequently should be weighed more.

idf: Words that occur in all the documents (functional-words like the, of etc) should be weighed less.
Using this weighing scheme with a distance metric, knn would produce better (more relevant)
classifications.

Another way to vary the importance of different dimensions is to use: Mahalanobis Distance

Here S is a covariance matrix. Dimensions that show more variance are weighted more.

KNN-ID and Neural Nets

Decision Trees:

Algorithm: Build a decision tree by greedily picking the lowest disorder tests.
NOTE: This algorithm is greedy so it does not guarantee that the tree will have the minimum total
disorder!

Disorder = Average of Entropy(Split)

Examples:
Disorder equation for a test with two branches (I, r) and each branch having 2 (binary) class.

Disorder =

a = count of class 1 on left side b = count of class 2 on left side
¢ = count of class 1 on right side d = count of class 2 on right side
a+b=I| c+d=r

Note that Note that Binary Entropy is symmetric!

For a test with 3 branches, and 2 binary class outputs:

Disorder =

a = count of class 1 on branch 1 b = count of class 2 on branch 1
¢ = count of class 1 on branch 2 d = count of class 2 on branch 2
e = count of class 1 on branch 3 f = count of class 2 in branch 3
a+b:b1 C+d:b2 e+f:b3

More Generally:

Where B is the set of branches, Py is the "distribution” of classes under branch b. In most case Py is

binary, i.e. have two values; But in the general case it can have multiple values.
For example, we had 3 class values.

a=countofclass1l ; b=countofclass?2 ;c=countofclass2 ;a+b+c=T

Homogeneous Partitioning Trick:

A time-saving heuristic shortcut to picking the lowest disorder test.

1. Pick tests that breaks the space into a homogeneous portion and a nhon-homogeneous
portion

2. Pick the test that partitions out the largest homogeneous portion; that test will likely
have the lowest disorder.

Caution! when the homogeneous portions are about the same; you should compute the full
disorder. This is where this shortcut might break down!

Table of common Binary Entropy values:
Note because H(x) is symmetric, i.e. H(1/3) = H(2/3). Fractions > 1/2 are omitted.
3

KNN-ID and Neural Nets

/3 to /9

/10 to /13

numerator denominator fraction
1 3 0.33

2 0.67
0.25
0.50
0.20

0.40

w N

0.60

—_—

0.17
0.33

w N

0.50
0.14
0.29

w N

0.43

—_—

0.13
0.25
0.38

A~ 0O DN

0.50

—_—

0.11
0.22
0.33

—
© ©O© © O 0 00 o0 00 N N N o o o o o o P~ »~p »w

A wWN

0.44

H
(fraction)
0.92

0.92
0.81
1.00
0.72
0.97
0.97
0.65
0.92
1.00
0.59
0.86
0.99
0.54
0.81
0.95
1.00
0.50
0.76
0.92
0.99

numerator denominator fraction

1 10 0.10
2 10 0.20
3 10 0.30
4 10 0.40
1 11 0.09
2 11 0.18
3 11 0.27
4 11 0.36
5 11 0.45
1 12 0.08
2 12 0.17
3 12 0.25
5 12 0.42
1 13 0.08
2 13 0.15
3 13 0.23
4 13 0.31
5 13 0.38
6 13 0.46

(fraction)
0.47

0.72
0.88
0.97
0.44
0.68
0.85
0.95
0.99
0.41
0.65
0.81
0.98
0.39
0.62
0.78
0.89
0.96
1.00

KNN-ID and Neural Nets

Neural Networks:

First, Read Professor Winston's Notes on NNs!

General Back Propagation Algorithm:

function train(examples)
1. Initialize weights
2. While true:
1. foreach (inputs, outputs) = example in examples
1. Run backward-propagation(inputs, outputs)
2. If termination conditions met then quit

Possible Termination conditions
1. When the error rate is O
2. When performance function P over the output and desired output is within an epsilon of O.

3. When the weight change from the last iteration is within an epsilon of 0.

function backward-propagation(inputs, outputs)
1. Fix inputs (X_i .. X_n) to input values, fix desired d to outputs
2. Forward Propagation step (Working forwards from input to outputs)
o for n from layer 1 to L

« compute
« | = inputs to the weights [x; when at the first layer, o; (output of previous

layer) at other layers.]

. compute

3. Backward Propagation step
o forlfromlayer Lto 1l (Working backwards from output layer to input layers)

. for each neuron nin layer |

compute

for the standard sigmoid unit, and performance function
If n is in the Lth (last) layer:

Else:

Note wy,; are links that come out of n into j nodes

compute
compute new weights

function test(inputs) == outputs
Run the forward propagation step, return o, in the last layer as outputs.

KNN-ID and Neural Nets

Why you shouldn't train with constant initial weights

A common error when implementing neural nets is to initialized weights to some constant k before
training.

When all weights are equal. For a fully connected neural network, the neurons in each layer will
receive the same weight update values, because they will see the same inputs and outputs.

In effect, neural units in such a network will behave in synchrony. Because of this synchrony you
have just reduce your network to a net with the expressive power a 1-neuron network.

Can you still learn XOR with a 3 node (2 input 1 hidden) network with weights set initially to k? No.
Can you learn AND? Yes. W.ith 1 Boundary you can still express AND.

So in practice, weights are always initially set to random values before training.

Here are some diagrams to illustrate this.
The networks used here have 2 layers. There are 2 neural units in the input layer, 1 unit in the hidden
layer, and there are 2 inputs. The target function we want to train is XOR.

Plotted are the decision boundaries represented by layer 1. The subplots illustrate the decision
boundaries as a function of time.

Figure 1 illustrates what happens when we set all the weights to 0: The green line depicts the single
boundary due to synchrony. So despite the potential expressive power of the network, it can't perfectly
classify XOR because of the symmetry caused by bad initial weight setting.

Figure 2 illustrates what happens if we do this right and set weights to random values. Perfect
classification.

Using Weights k = 0 Using Random initial Weights

KNN-ID and Neural Nets

Simulating The Steps of Back Propagation

This is a detailed Step-by-step answer to the first 2 steps of the Fall 2009 Quiz 3 Neural Nets part B.

The given network has the following architecture:

Your task is to fill in the following table (non-shaded). Detailed calculations a) - I) for the fill-in boxes
are included below. In forward steps, your goal is to compute z, o, d-o In backward steps, your
goal is to compute the weight updates & and AWs and find the new Ws.

A B |T [|Wa Wg Wr z o) d-o
forward o lo [-1 |o 0 1 a)-1 |b)o0.27 (1-0.27)
=0.73
backward c)O0 d) O e) 0.86
forward o |1 |-1 |o 0 0.86 f) -0.86 [g) 0.30 61;0'3) -
backward h) O i) 0.15 j) 0.71
forward 1 |o |1 |o 0.15 0.71 k) -0.71 |I) 0.33 8052'33) =

a) z = A*W, + B*Wg + T*Wy = 0*0+0*0+-1*1 = -1

b) o = sigmoid(z) = sigmoid(-1) = 1/(1+e™-(-1)) = 0.27

c) 0 = (d - 0)(0(1-0))
= (1 - 0.27) * (0.27*(1-0.27)) = 0.14
AW, =alpha*d0*A=1*0.14*0=0

Wp=0+AW,=0+0=0

d) AWg = alpha*d * B
Wg=0+AWg=0+0=0

e) AWy =alpha*d*T=1*0.14*-1=-0.14
Wr=1+ AW =1-0.14 = 0.86

f) z = A*Wp + B*Wg + T*W = 0*0+1*0+-1*0.86 = -0.86

g) o = sigmoid(-0.86) = 0.30

h) & = (d - 0)(0(1-0)) = (1 - 0.3) * (0.3*(1-0.3)) = 0.15

AW, = alpha* 3 *A=1*0.15*0=0
W, =0+ AW, =0

i) AWg=1*0.15*1=0.15
Wg = 0 + AWg = 0.15

j) AW = alpha*3*T=1*0.15* -1 = -0.15
Wr = 0.86 + AW = 0.86 + -0.15 = 0.71

k) z = A*W, + B*Wg + T*W = 1*0+0*0.15+-1*0.71 = -0.71

) o = sigmoid(-0.71) = 0.33

Because it's the last (and only layer).

KNN-ID and Neural Nets

Deriving the Back-Propagation Weight Update Equations
The general equation for weight updates in back propagation:
(For a weight with input i and going into a node n.)

(¥ is the learning rate (also denoted by r). Lower the learning rate, longer it takes to converge. But
if the learning rate is too high we may never find the maximum (we keep oscillating.!)

To find the partial, we employ the chain rule:

Here:

Where i is an input into neuron N.

Hence the third term is always the input.

5” is used as the short hand for the first 2 partials.
For the very last layer:

For the standard Performance function (for Gradient Ascent - Maximization)

Partial on the Sigmoid function:

Hence for the last layer:

For when layer is not the last layer. Suppose m is '%he layer above n.

KNN-ID and Neural Nets

Hence for all layers that are not the last layer:

Exercise: consider what this partial: might look like under variants of sig(z,)?

¢ has the effect of sharpening or fattening the sigmoid
k has the effect of translating the sigmoid left or right on the x-axis.
Find §,, for the above equations.

KNN-ID and Neural Nets

How to solve Network Weights - An XOR example:

Solve for the 9 unknown weights for the network that will perfectly classify the concept in the picture.

Step 1. First, think of input-level units (units A, and B) as defining regions (that divide +s from -s) in
the X, Y graph. These regions should be depicted as linear boundary lines with arrows pointing
towards the +ve data points. Next, think of hidden level neural units (unit C) as some logical operator
(a linearly separable operator) that combines those regions defined by the input level units.

So in this case: units A, and B represent the diagonal boundaries (with arrows) on the graph (definition
two distinct ways of separating the space). Unit C represents a logical AND that intersects the two
regions to create the bounded region in the middle.

Step 2. Write the line equations for the regions you defined in the graph.
A) The boundary equation for the region define by line A

Y<-1x+ 3/2
B) The boundary equation for the region defined by line B
Y>-1x+1/2

Step 3. Rewrite the line equations into the form: aX + bY > c¢
Where a, b, and c are integers.
A)
Y<-1x+3/2
X+Y<3/2
22X + -2Y >3

B) Y >-1x+1/2
X+Y>1/2
2X + 2Y > 1

Step 4. Note down the sum-of-weights-and-inputs (z) for each neural unit can also be written in this
form.
For Unit A: z =

Wyxa X + Wyp Y + Wp(-1) >0

Wxa X+ Wya Y = Wy

For Unit B: z =
Wyxg X + Wyg Y + Wg(-1) > 0
Wxg X + Wyg Y > Wpg

10

KNN-ID and Neural Nets

Why Wy X + Wya Y + Wua(-1) >0vs. <0?
When z = WXA X + WYAY + WA(-1) > 0 sigmoid(z>0) approaches 1 +ve points
When z = WXA X + WYAY + WA(-1) <0 sigmoid(z<0) approaches O -ve points

The when expressed as > 0 the region is towards the +ve points
When expressed as < 0 the region defined to is pointing towards -ve points.

Step 5. Easy! Just read off the weights by correspondence. (Note: In the 2006 Quiz, the L and
Pinapple problem wants you to match the correct equation by constraining the value of some weights.)

22X +-2Y =3 line A's inequality
Wya X + Wya Y = Wy z equation for unit A.

WXA:_Z WYA:_Z WA:3

2X + 2Y=>1 line B's inequality

Wxg X + Wyg Y > Wpg z equation for unit B

WXB:2 WYB=2 WB:l

Step 6. Solve the logic in the second Layer
We want to compute (A AND B) So build a Truth table! and solve for the constraints!

A B desired output Equations Simplified

0 1 0 Wge -We <0 Wge < Wc

1 0 0 Wac -Wce <0 Wac < Wc
Wac + Wgpe - W,

1 1 1 AOC BC ™ TC |Wac + Wpe > W¢
>

We notice a symmetry in Wge and Wxc, so we make a guess that they have the same value.
WBC =2 and WAC =2

Then equalities in the table above condense down to:

We >0 W > 2 (twice) We < 2+2 =14

So 2<Wc<4 Then W = 3 will work. An acceptable solution:

WBC=2 WAC=2 WC=3

The following solution also works, because it also obeys the stated constraints.

WBC = 109 WAC = 109 WC = 110

But quizzes will ask for smallest integer solutions.

11

KNN-ID and Neural Nets

Overfitting and Underfitting

Overfitting

. Occurs when learned model describes randomness or noise instead of the underlying
relationship.

. Occurs when a model is excessively complex.

. Analogy - "trying to fit a straight line (with noise) using a curve"

. An overfit model will generally have poor predictive performance (high test error). But low
training error.

. It can exaggerate minor fluctuations in the data.

Examples

KNN - Using a low k setting (k=1) to perfectly classify all the data points. But not being aware
that some data points are random or due to noise. Using small k makes the model less
constrained, and hence the resulting decision boundaries can become very complex. (almost more
than necessary).

Decision Tree - Building a really complex tree so that all data points are perfectly classified.
While the underlying data has noise or randomness.

Neural Nets - Using a complex multi-layer neural net to classify the (AND function + noise). The
network will end up learning the noise as well as the AND function.

Underfitting
. Occurs when a model is too simple, does not capture the true underlying complexity of the
data. Also known as bias error.
. Analogy: '"trying to fit a curve using a straight line™
. An underfit model will generally have poor predictive performance (high test error). Because
it is not sufficiently complex enough to capture all the true structure in the underlying data.

Examples

KNN - Using k = total number of data points. This will classify everything as the most frequent
class (the mode).

Decision Tree - Using 1 test stump to classify an AND relationship; when one needs a decision
tree of at least 2 stumps.

Neural Nets - Using a 1-neuron net to classify an XOR

How to Avoid Overfitting /7 Underfitting

Use Cross Validation!

N-Fold Cross-validation: Divide the training data into n partitions
Join n-1 partitions into a "training set”, use the nth partition as the unknowns (test set)
Repeat this for n times, and compute the average error or accuracy.

Leave-One-Out Cross-validation: A specific case of N-fold.
If dataset has N data points, then put N-1 data points in the training set. Use the left-out data
point as test. Repeat N times.

How to pick a good model:

12

KNN-ID and Neural Nets
Try different models. Pick the model that gives you the lowest CV error.
Examples:

KNN - vary k from 1 to N-1. Run cross-validation under different ks.
Choose the k with the lowest CV error.

Decision Tree - Try trees of varying depth, and varying number of tests. Run cross-validation to
pick the tree of lowest CV Error.

Neural Net - Try different Neural Net architectures. Run CV to pick the architecture of lowest CV
Error.

Models chosen using cross-validation can generalize better, and are less likely to overfit or
underfit.

13

https://docs.google.com/Doc?tab=edit&dr=true&id=dhqhm2bq_108w7nq9zc3
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTA4dzducTl6YzM
https://docs.google.com/abuse?id=0AbO0KikZO04vZGhxaG0yYnFfMTA4dzducTl6YzM
https://docs.google.com/
https://docs.google.com/

MIT OpenCourseWare
http://ocw.mit.edu

6.034 Artificial Intelligence
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

