
Foundations: fortunate choices

• Unusual choice of separation strategy:
> Maximize “street” between groups

• Attack maximization problem:
> Lagrange multipliers + hairy mathematics

• New problem is a quadratic minimization:
> Susceptible to fancy numerical methods

• Result depends on dot products only
> Enables use of kernel methods.
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Key idea: find widest separating “street” 
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Classifier form is given and constrained

• Classify unknown u as plus if:

• Then, constrain, for all plus sample vectors:

• And for all minus sample vectors

0)( >+⋅= bf uwu

1)( ≥+⋅= ++ bf xwx

1)( −≤+⋅= −− bf xwx
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• The constraints require:

• So, subtracting:

• Dividing by the length of w 
produces the distance between 
the lines:
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From maximizing to minimizing…

• So, to maximize the width of the street, you need 
to “wiggle” w until the length of w is minimum, 
while still honoring constraints on gutter values:

• One possible approach to finding the minimum is 
to use the method devised by Lagrange.  Working 
through the method reveals how the sample data 
figures into the classification  formula.

separation2
=

w
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From maximizing to minimizing…

• A step toward solving the problem using 
LaGrange’s method is to note that maximizing 
street width is ensured if you minimize the 
following, while still honoring constraints on 
gutter values.  

• Translation of the previous formula into this one, 
with ½ and squaring, is a mathematical 
convenience.

2
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6



…while honoring constraints

• Remember, the minimization is constrained
• You can write the constraints as:

Where yi is 1 for plusses and –1 for minuses.

1)( ≥+⋅ by ii xw
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Dependence on dot products

• Using LaGrange’s method, and working through some 
mathematics, you get to the following problem.   When 
solved for the alphas, you then have what you need for the 
classification formula.
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Key to importance

• Learning depends only on dot products of 
sample pairs.

• Classification depends only on dot products 
of unknown with samples.

• Exclusive reliance on dot products enables 
approach to problems in which samples 
cannot be separated by a straight line.
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Example
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Another example
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Not separable?  
Try another space!

Using some mapping, Ф

Problem starts here, 2D Dot products computed here, 3D

Φ
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What you need

• To get x1 into the high-dimensional space, you use

• To optimize, you need

• To use, you need

• So, all you need is a way to compute dot products in high-
dimensional space as a function of vectors in original 
space!

)( 1xΦ

)()( 21 xx Φ⋅Φ

)()1( ux Φ⋅Φ

13



What you don’t need

• Suppose dot products are supplied by

• Then, all you need is

• Evidently, you don’t need to know what Ф
is; having K is enough!

)2,1()2()1( xxxx K=Φ⋅Φ

)2,1( xxK
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Standard choices

• No change

• Polynomial

• Radial basis function
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Polynomial Kernel
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Radial-basis kernel
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Another radial-basis example

18



Aside: about the hairy mathematics 

• Step 1: Apply method of Lagrange 
multipliers
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Aside: about the hairy mathematics

Step 2: remember how to differentiate vectors

Step 3: find derivatives of  the Lagrangian L
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Aside: about the hairy mathematics

• Step 4: do the algebra, then ask a numerical 
analyst to write a program to find the values 
of alpha that produce an extreme value for: 
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But, note that

• Quadratic minimization depends on only on 
dot products of sample vectors

• Recognition depends only on dot products 
of unknown vector with sample vectors 

• Reliance on only dot products key to 
remaining magic
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