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A strong classifier is one that has an error rate close to zero. A weak classifier is one that has 

an error rate just below 1
2 , producing answers just a little better than a coin flip. 

Freund and Schapire discovered that you can construct a strong classifier from weak 
classifiers such that the strong classifier will correctly classify all samples in a sample set. 
Better still, the strong classifier consists of a sequence of weighted classifiers, determined step 
by step. In the following, the multiplicative weight found in the first step is α1 and the weak 

classifier is h1(xi), and in step s, the weight is αs and the classifier is hs(xi): 

H(xi) = sign(α1h1(xi) +  α2h2(xi) +  · · · + αshs(xi) · · · 


where


sign =	
+1 for positive arguments

−1 for negative arguments


hs(xi) = 	
+1 for samples the classifier thinks belong to the class 
−1 for samples the classifier thinks do not belong to the class 

Freund and Schapire named their method Adaboost, an acronym for adaptive boosting. 

In the first Adaboost step, you find the weak classifier, h1(xi), that produces the lowest 
error rate; then, you find the corresponding multiplier, α1. In step s, you first find the weak 
classifier, hs(xi), that produces the lowest error rate with the samples reweighted to emphasize 
previously misclassified samples; then you find the corresponding multiplier, αs. You continue 
taking steps until the classifier H(xi) correctly classifies all samples or you cannot find any 
weak classifier for the next step. 

Several questions emerge: 

• How do you compute the error rate
† 
, E, for the candidates for hs(xi)? 

• How do you compute αs once you have hs(xi)? 

• How do you reweight the samples to emphasize the misclassified samples for the next 
step? 

To compute the error rate, you assign to each sample, i, at each step, s, an emphasis-
determining weight, ws

i . The weights used in step 1 are all the same: 

11w = i number of samples 

Each time you calculate the weights for the next step, you normalize so that the weights 
still add to 1: 

wi
s = 1  

i 

†We use E for the error rate to avoid confusion with the base of the natural logarithms, e. 
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The error rate of a candidate classifier for a particular step is the sum of the weights for 
the samples that the candidate classifier misclassifies at that step: 

Es	 s 
candidate = wi for i misclassified by the candidate at step s


i


Es is the error rate for the best of the candidate classifiers.


But what about computing αs and reweighting the samples. With some moderately 
complex mathematics, Freund and Shipiri determined that computing new weights from 
old weights using the following formula ensures that the overall error for H(xi), as you 

add classifiers, will stay under an exponential bound, and eventually go to zero. Ns is a 

normalizing constant
† 

for step s that ensures that all the new weights, ws
i 
+1, add up to 1. 

⎧ ws

e−αs ⎨ Ns
i for correctly classified samples 

s+1wi	 = ⎩ ws 
i e+αs 

for misclassified samples Ns 

With more math, Freund and Shipiri determined that the exponential bound on the 
overall error of H(xi) is minimized if Ns is minimized. This led them to a formula for αs: 

1 1 − Es 

αs = ln
2 Es


At this point, you have all you need to write an Adaboost program:

•	 You use uniform weights to start. 

•	 For each step, you find the classifier that yields the lowest error rate for the current 

weights, ws
i . 

•	 You use that best classifier, hs(xi), to compute the error rate associated with the step, Es 

•	 You determine the alpha for the step, αs from the error for the step, Es . 

•	 With the alpha in hand, you compute the weights for the next step, ws
i 
+1, from the weights 

for the current step, ws
i , taking care to include a normalizing factor, Ns, so that the new 

weights add up to 1. 

•	 You stop successfully when H(xi) correctly classifies all the samples, xi; you stop unsuc­
cessfully if you reach a point where there is no weak classifier, one with an error rate 

1< 2 . 
You, however, are not a computer, so calculating those exponentials and logarithms is im­
practical on an examination. You need to massage the formulas a bit to make them work for 
you. 

First, you plug the formula for αs into the reweighting formula, producing the following: 

⎪ wi
s 

Es

⎧ ⎨ Ns 1−Es for correctly classified samples 

s+1wi	 = √ ⎪ ws ⎩	 i 1−Es 
for misclassified samples Ns Es 

Now, because Ns must be that number that makes the new weights add up to 1, you can 
write the following: 

†We use Ns rather than Zs, used by Freund and Schapire, to avoid confusion with the number 2 when 
written by hand. 
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1 − Es Es 
Ns = ws

i + ws
iEs 1 − Es 

wrong right 

Note that the sum of the weights over the misclassified samples is the error rate, Es, and 

therefore the sum of the rest of the weights must be 1 − Es. Accordingly, Ns simplifies: 

Ns = 2  Es(1 − Es) 

Plugging this value into the formula for calculating the new weights yields: 

⎧ ⎪ ws
i Es 1 ws

i
⎪ 
2 
√ 

Es(1−Es) 1−Es = 2 (1−Es) for correctly classified samples ⎨ 
s+1wi = √ ⎪ ws 

1−Es 1 ws ⎪ √ i = i for misclassified samples ⎩ 
2 Es(1−Es) Es 2 Es 

This makes sense because you know that you need a classifier with an error rate of less 
than 1

2 to succeed. Hence, Es < 2
1 , so the new weights for misclassified samples will go up 

and the new weights for the correctly classified samples will go down, thus emphasizing the 
misclassified samples. 

You can also usefully note the sums of the new weights: 

∑ 1 ∑ 1s+1 swi = wi = 
2Es 2wrong wrong 

∑ 1 ∑ 1s+1 sw = w = i 2(1 − Es) i 2 
right right 

You conclude that you can find the new weights by scaling the weights of the misclassified 
samples up to 1

2 and by scaling the weights of the correctly classified samples down to 1
2 . 

You do not even have to compute any logarithms to get the alphas, because you do not 
need the alphas to determine the result produced by H(xi). Here is why: the result is positive 

if the sum of the alphas for the weak classifiers that return +1 is greater than the sum of 

the alphas for the weak classifiers that return −1. But the sum of the logarithms of a set 

of expressions is the logarithm of the product of those expressions. Accordingly, the H(xi) 

returns +1 if the following holds: 

∏ (1 − Es) (1 − Es)≥
Es Es 

hs 
(xi ) that yield + hs 

(xi ) that yield ­

Thus, multiplying a few simple fractions usually suffices on an examination. Of course, 
if all the weak classifiers agree, you need not do any calculation at all to determine the result 
returned by H(xi). 



MIT OpenCourseWare
http://ocw.mit.edu

6.034 Artificial Intelligence
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



