
MITOCW | Mega-R4. Neural Nets

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: Today we are introducing an exciting new pledge in 6034. Anyone who has already looked at

any of the neural net problems will have easily been able to see that even though Patrick only

has them back up to 2006 now, there's still-- well out of four tests, perhaps two or three

different ways that the neural nets were drawn. Our exciting new pledge is we're going to draw

them in a particular way this year. And I will show you which way, assuming that this works.

Yes.

We are going to draw them like the one on the right. The one on the left is the same as the

one on the right. At first, not having had to explain the difference between the two of them, you

might think you want the one on the left. But you really want the one on the right, and I'll

explain why. The 2007 quiz was drawn, roughly similarly, to this. Although if you somehow

wind up in tutorial or somewhere else doing one of the older quizzes, a lot of them were drawn

exactly like this.

In this representation, one thing I really don't like, is that the inputs are called x's, and the

outputs are called y's, but there's two x's, so the inputs are not x and y, and then they often

correspond to x's of a graph, and then people get confused. Additional issues that many

people have are the fact that the summation and the multiplication with the weight is implied.

The weights are written on the edges, where outputs and inputs go, and the summation of the

two inputs into the node are also implied.

But take a look here. This is the same net. These w's here would be the w's that are written

onto these lines are here. Actually the better way to draw it would be like so, since each of

these can have their own w, which is different. So each of the w's that are down here, are

being explicitly set to a multiplier. Where as here, you just had to remember to multiply the

weight by the input that was coming by. Here you see an input, comes to a multiplier, you

multiply by the weight, then once you multiplied all the inputs by the weight, then you send

them to a sum, so the sigma is just a sum, you sum them, add them all together, send the

result of that into the sigmoid function, our old buddy, 1 over 1 plus e to the negative whatever



our input was, with a weight for an offset, and then we send the result of that into more

multipliers with more weights, more sums, more sigmoids.

So this is how it's going to look like on the quiz. And this is a conversion guide from version 0.9

data into version 1.0. So if you see something that looks like this, on one of the old quizzes

that you're doing, see if you can convert it, and then solve the problem. Chances are if you

can convert it, you're probably going to do fine. We'll start off not only with this conversion

guide, but also-- I'll leave that up here-- also I'm going to work out the formulas for you guys

one more time.

These are all the formulae that you're going to need on the quiz. And then we're going to

decide what will change in the formulae, if, and this is a very likely if, there seems to be good

amount of times that this happens, is that the sigmoid function in those neurons out there was

ever changed into some other kind of function. Hint. It's changed into a plus already in the

problem we're about to do. People change it all the time into some bizarro function. I've seen

arc tangent, I think. So here we go.

Let's look at the front of it. First of all, sigmoid. Well our old buddy, sigmoid, I just said it a

moment ago, sigmoid is 1 over 1 plus e to the minus x. Also, fun fact about sigmoid, the

derivative of sigmoid, is itself-- the derivative of sigmoid is-- let's say that the sigmoid-- we'll

just turn sigmoid into like the letter say y. Y is the result, right? So if you say y equals 1 over 1

plus e to the negative x, then the derivative of sigmoid is y times 1 minus y. You can also write

out the whole nasty thing, it's 1 over 1 plus e to the negative x times 1 minus 1 over 1 plus e to

negative x. So the nice property of sigmoid it's going to be important for us in the very near

future, and that future begins now.

So now the performance function. This is a function we used to tell neural nets when they

inevitably act up and give us really crappy results. At first we tell them just how long they are,

with our performance function. The first function can be any sane function that gives you a

better score, where better can be decided as lower or higher, if you feel like, that gives you a

better score, if your answers are closer to the answer you're looking for. However, in this case,

we have, for a very sneaky reason, chosen the performance function to be 1/2 d, which is the

desired output, minus o, the actual output squared. So we want a small, well it's negative, So

we want a small negative or 0. That would mean we performed well.

So why this? Well the main reason is ddx of performance is, the 2 comes down, the o is the



variable that we're actually, so maybe I should say ddo, that negative comes out, we get a

simple d minus o. And yeah, we're using derivatives here. So those are fine. These are two

assumptions. They could be changed on your test. We're going to figure out what happens, if

we change them, if we change the performance, if we change the sigmoid, that is if we change

the sigmoid to some other function, what's going to happen to the next three functions, which

are basically the only things that you need to know to do backpropagation.

So let's look at that. First, w prime. This is the formula for a new weight. After one step of

backpropagation. A new weight in any of these positions that you can see up here on this

beautiful neural net. That w-- each of the w's will have to change step by step. That's, in fact,

how you do the hill climbing neural nets. You change the weights incrementally. You step a

little bit in the direction towards giving you your desired results until eventually, you hope, you

have an intelligent neural net. And maybe you have many different training examples that you

run it on, in a cycle, hoping that you don't over fit to your one sample, on a computer. But on

the test, we will probably will not do that.

So let's take a look at how you calculate the weights for the next level. And then you have the

weights for the current level. So first things first. New weight, weight prime equals-- starts with

the old weight. That has to go there because otherwise we're just going to jump off

somewhere at random. We want to make a little step in some direction, so we want to start

where we are, with the weight. And then we're going to add three things. So if we're talking

about the weight between some i and some j-- there's some examples of the names of

weights. So this is w 1 i, that's the weight between 1 and-- so this is w 1 a, it's the weight

between 1 and a. This is w 2 b, which is the weight between 2 and b . Makes sense?

Well makes sense so far, but what if it's just called w b, then it's the weight between-- these

w's that only have one letter, we'll get to later. They're the bias. They're the offset. They are

always attached to a negative 1. So you can pretty much treat them as being a negative 1

here, that is then fed into a multiplier with this w b, if you like. This is implied to be that. All of

the offsets are implied to be that. So w plus sum of alpha-- why is this Greek letter? Where

does it come from? How do we calculate it?

Well alpha is just some value told to you on the quiz. You'll find it somewhere. There's no way

you're going to have to calculate alpha. You might be asked to try to give us an alpha, but

probably not. Alpha is supposed to give the size of our little steps that we take when we're

doing hill climbing. Very large alpha, take a huge step. Very small alpha, take tentative steps.



So alpha is there, basically, to change this answer and to make the new value either very

close to w, or far from w, depending on our taste. So plus alpha times i, so i is the value

coming in into the node. We're changing the weight here. So i is the value, for instance, i sub 1

here, i would be the value of WAC, i would be the value coming output of node a. WBC, i

would be the output of node b. i is sometimes as little as i is the input coming in to meet that

weight at the multiplier. And then it's multiplied by delta j. Your delta is the delta that belongs to

these neural net nodes.

What is a delta, you said? Funny you may ask. It is a strange Greek letter. It sort of comes

from the fact that we're doing some partial derivatives and stuff, but the main way you're going

to figure out what the deltas are are these two formulae that I've not written in yet. So hold off

on trying to figure out what the delta is until-- well right now, I'm about to tell you the delta is.

So the delta is basically, think of the delta as using partial derivatives to figure out which way

you're going to step, when you're doing hill climbing. Because you know when you're doing hill

climbing, you look around, you figure out, OK, this is the direction of the highest increase, and

then you step off in that direction.

So the deltas are telling you which way to step, with the weights. And the way they do that is

by taking the partial derivative of-- basically you try to figure out how the weight that you're

currently looking at is contributing to the performance of the net. Contributing to, either the

good performance of the net, or the bad performance of the net. So when you're dealing with

the weights, like WBC, WAC, that pretty much directly feed into the end of the net. They feed

into the last node, and it then comes out. It's the output. That's pretty easy. You can tell

exactly how much those weights, and the values coming from them, are contributing to the

end. And we do that by essentially, remember what the partial derivative, so partial derivative

here is, in fact, the way that the final weights are contributing to the performance, is just the

performance function.

Partial derivative-- I've already figured out the derivative here, it's just d minus o. This is for

sort of final weights, the weights in the last level. D minus o, except we're not done yet,

because when we do derivatives, remember the chain rule. To get from the end to these

weights, we pass through, well it should be a sigmoid, here it's not, we're going to pretend it is

for the moment, we pass through a sigmoid, and since we passed through the sigmoid, we

had better take the derivative of the sigmoid function. That is, y times 1 minus y. Well what is

y? What is the output of the sigmoid? It's up. So that's also multiplied by o times 1 minus o.



However, there is a-- let me see, let me see, yes-- sorry, I'm carefully studying this sheet to

make sure my nomenclature is exactly right for our new nomenclature, which so new and

brave, that we're doing it, that we only knew for sure we're going to do it on Wednesday. So

we have d minus o times o times 1 minus o. So you say, that's fine, that can get us these

weights here, even this w c, how are we going to get the deltas for the new weights here? Oh,

I realize-- yeah, I got it. So the delta-- by the way, this is a delta c, how is neuron c contributing

to the output? Well it's directly contributing to the output , and it's got a sigmoid in it. It doesn't

really, but we're pretending it does for now. d minus o times 1 minus o.

What about inner node? Node d, node a, what are we going to have to do? Well the way they

contribute to the output is that they contribute to node c. So we can do this problem

recursively. So let's do this recursively. First of all, as you have probably figured out, all of

them are going to have an o times 1 minus o factoring from the chain rule, because they're all

sigmoid, pretending that they're all sigmoids. We also have a dearth of good problems that are

actually sigmoid on the web right now. There's only 2007. But here's o times 1 minus o, what

are we going to do for the rest of it? How does it contribute to our final result?

Well it contributes to our final result recursively. So we're talking about delta i. I is an inner

node. It's not a final node. It's somewhere along the way. So sum over j of w, going from i to j,

times delta j. Now sum over all j, j such that i leads to j. I needs to have a direct path into j. So

if i, in this instance, was j, everyone, the only possible j in this would be c. That's right. We

would not sum over b as one of the j. i does not lead to b, or a does not lead to b, a only leads

to c. Also note that c does not need to be here. That's going backwards. So you just-- to figure

out which j you're looking at, look directly forwards at the next one. So if there was another d

here, or that a does not go to d, a goes to c.

You only look at the next level children, and you sum over all those children, the weight

between them, multiplied by the child's delta. That makes sense, right? Because the way we

affect, if the child's delta is the way the child affects the output, calling these children for a

moment, and then if this one directly affects the output, then the way this one affects it is-- it

affects it because it affects this, but it's also multiplied by it's weight. So in fact, for instance, if

the weight between a and c were 0, then a doesn't affect the output at all, right? Because its

weight is 0, and when we do this problem, we go this times 0, and then we try to add it in

there, doesn't affect anything. It's weight is very high, it's going to really dominate c, and that is

taken into account here, and then multiply by the delta for the right node.



So the following question, and since I spent a lot of time with formulae and not that much time

starting on the problem, I will not call on someone at random, but rather take a volunteer. If no

one volunteers, I'll eventually tell you, which is, we've got some nice formulae on the bottom

three. If we change the sigmoid function, what has to change? That's the only thing that

changes in this crazy assed problem right here, which by the way, changes the sigmoid

functions into adders, is that we take all of the o times 1 minus o in delta f and the delta i, and

we change it to a new derivative. We then do the exact same thing that we would've done.

Correct.

And on a similar note, if you change the performance function, how many of these equations

at all have to change out of the bottom three. Yeah. That's right, just one, just delta f. Take the

d minus o, make it the new derivative of the new performance function. And in fact, delta i

doesn't change at all. Does everyone see that? Because it is very common for something to

be replaced, I think three of the four the quizzes that we have, replaced in some-- changed

something in some way.

All right. Let's go. We're going to do 2008 quiz, because it has a part of the end that screwed

up everyone, and so let's make sure we get to that part. That's going to be the part that you

probably care about the most at this point. So these are all adders instead of sigmoids. That

means that they simply add up everything as normal, for a normal neural net, and then there's

no sigmoid threshold. They just give some kind of value. Question?

STUDENT: So we talked about those multiplier things, we don't have those in nodes?

PROFESSOR: They're not neural net nodes. That is one of the reasons why that other form that you can see

over there is elegant. It only has the actual nodes on it. It is very compact. It's one of the front

we've used in the previous tests. The question is, do those multipliers count as nodes?

However by not putting in the multipliers, we feel it sometimes confuses people of explicitness.

The ones that are nodes will always have a label, like a or here, you see there's a sigmoid and

an L1. The multipliers are there for your convenience, to remind you to multiply, and also

those, if you look those sigmoids that are over there, are there for your convenience to remind

you to add.

In fact, the only thing that counts as a node in the neural net-- and that's a very good question-

- is usually the sigmoids, here it's the adders. We've essentially taken out the sigmoids. These

adders are the-- oh, here's the way to tell. If it's got a threshold weight associated with it, then



it's one of the actual nodes. A threshold weight. I guess the multipliers look like they have a

weight, but this is just the weight that is being multiplied in. This is our witness be multiplied in

with the input, but if it has a threshold weight, like wa, wb-- oh, I promised I would tell you guys

the difference between the two weights.

So let's do that very quickly. The kinds of weights that, say w2b or w1a, our weight the comes

between input 1 and a or between a and c, then mentally multiplying the input by this weight,

and then eventually that's added together. The threshold weights, they just have like wb, wa,

wc. They are essentially to decide the threshold for a success or failure, for a 1 or a 0, or

anything in between, at any of the given nodes. So the idea is maybe you at some node want

to have a really high cut off, you have to very high value coming in, or else it's a 0. So you put

a high threshold. The weight is multiplied by negative 1. And in fact, the threshold weight

won't-- one could consider if you wanted to that the threshold weight times negative 1. was

also added in it that sum, instead of putting at the same location as the node. If that works

better for you, when you're converting it, you can also think of it that way. Because the

threshold weight is essentially multiplied by negative 1 and added in at that same sum over

there. So that's another way to do it.

There's a lot of ways to visualize these neural nets. Just make sure you have a way that

makes sense to you, and that you can tell pretty much whatever we write, as long as it looks

vaguely like that, how to get it in your mind, into the representation that works for you.

Because once you have the representation right for you, you're more than halfway to solving

these guys. They aren't that bad. They just look nasty. They don't bite. OK.

These are just adders. So if it's just an adder, then that means that, if we take all the x inputs

coming in-- let's do x and y for the moment, so we can figure out the derivative-- then what

comes out after we just add up the x, what comes out, y equals x, right? We're just adding it

up. Adding up all the input, we're not doing anything to it. Y equals x is what this node does.

You people see that? So the derivative is just one. So that's pretty easy, because the first

problem says, what is the new formula, delta f. So I'll just tell you. You guys probably figured it

out. o times 1 minus o. Because we replaced d minus o with 1. OK? Makes sense so far?

Please ask questions along the way, because I'm not going to be asking you guys. I'll do it

myself. Question?

STUDENT: Why to we use d minus o of 1?



PROFESSOR: That's a good question. The reason is because I did the wrong thing. So see, it's good that

you guys are asking questions. It actually should be replaced with o times 1 minus o with 1.

The answer is delta f equals d minus o. So yes, perhaps I did it to trick you. No, I actually

messed up. But yes, please ask questions along the way. Again, I don't have time to call on

you guys at random to figure out if you guys are following along. So I'll do it myself. We're

placing the o times 1 minus o with 1 because of the fact that the sigmoid is gone, and we get

just delta f equals d minus o.

So great. We now want to know what the equation is for delta i, at the node a. So delta a. Well

let's take a look. The o times 1 minus o is gone. Now we just have the sum over j, which you

guys already told me is, only c of WAC times delta c. We know that delta c is d minus o. The

answer is delta a is just WAC times d minus o. That time, I got it right. I see the answer here.

Though it's written in a very different format from the old quiz. Any questions on that?

Well that's part a that we finished out of c. Let's go to part b. Part b is doing one step

backpropagation. There's almost always going to be one of these in here. So the first thing it

asks is to figure out what the output o is for this neural net if all weights are initially 1 except

that this guy right here is negative 0.5. All the other ones start off as 1. Let's do a step-- oh,

let's see what are the inputs. The inputs are also all 1. Desired output is also 1. And in fact, the

rate constant alpha is also 1. This is the only thing that isn't 1, folks.

So let's see what happens. 1 times 1 is 1, then this is a negative 1 times 1 is negative 1. That's

0. The exact same thing happens here because it's symmetrical. So these are both 0. 0 times

1 is 0, 0 times 1 is 0. Then this is negative 1 times negative 0.5 is positive 0.5, so 0 plus 0 plus

a positive 0.5, the output is positive 0.5. Does everyone see that? If not, you can convince

yourself that it is positive 0.5. That would be a good exercise for you, run through one forward

run. The output is definitely positive 0.5. First time around. OK?

Now we have to do one step of backpropagation. To do that, let's calculate all the delta so that

we can calculate all the new weights, the the new weight primes. So delta c. That's easy. You

guys can tell me what delta c is. We figured out what the new delta c is going to be. So simple

addition or subtraction problem? Everyone, delta c is?

STUDENT: 0.5.

PROFESSOR: 0.5, one half, yes. All right. We know that delta a and delta b are just WAC times delta c, and

WBC times delta c. So they are?



STUDENT: One half.

PROFESSOR: Also one half, because all the weights were 1. Easy street. OK. We've got all of the deltas are

one half. And all but a few of the weights are 1. So let's figure out what the new weights are.

New WAC, OK. Yeah, so let's see. What's going to be the new WAC? So the new WAC is

going to be old WAC, which is 1, because all of them are 1 except for wc, plus the rate

constant which is 1, times the input coming in here, but remember that was 0, so actually it's

just going to be the same as the old WAC. This is a metrical problem between b and a, at the

moment, this is going to be the same.

All right. Somethings are going to change though. What about wc, that was the one that was

actually not 1? OK. So new wc, remember, the i for wc, the i that we use in this equation is

always negative 1 because it's a threshold. So we have the old wc, which is negative 0.5, plus

1 times negative 1 times delta c, which is one half. So we have negative 0.5 plus negative 0.5

equals negative 1. w 1 a, well we've got w 1 a starts out as 1. Then we also know that w 1 a is

going to be equal to 1 plus 1 times the input, which is 1, times delta of a, which is one half, so

1.5. And since it's symmetrical between a and b, then w 2 b is also 1.5. And then finally, wa

and wb, the offsets here, well they start at 1 plus 1 times negative 1 times 0.5. So they're both,

everyone?

STUDENT: One half.

PROFESSOR: One half. That's right. That's right. Because negative 1 is their i. Negative 1 times one half plus

positive 1 is just one half. That's one full step. Maybe a mite easier than you might be used to

seeing, but there's a full step. And it asks what's going to be the output after one step of

backpropagation? We can take a look. So we have 1 times the new wa, which is 1.5, you've

got 1.5, then the new wa is just 0.5, now is 0.5, that's a 1 coming into an adder. We've got

another 1 coming in here because it's symmetrical. So 1 and a 1, 1 times WAC is 1. 1 times

WBC is 1. So we have two 1s coming in here, they're added, that's 2. Then this has become

negative 1, in fact, at this point. So negative 1 times negative 1, that's 3, and the output is 3.

All right. Cool. We've now finished part b, which is over half of everything. Oh no, we've not.

One more thing.

These are adders. They're not sigmoids. What if we train this entire neural net to try to learn

this data, so that it can draw a line on a graph, or draw some lines, or do some kind of

learning, to separate off the minuses from all the pluses. You've seen, maybe, and if not, you



learning, to separate off the minuses from all the pluses. You've seen, maybe, and if not, you

are about to in a second, because it asks you to do this in detail, than neural nets can usually

draw one line on the graph for each of these, sort of, nodes in the net, because each of the

nodes has some kind of threshold. And you can do some logic between them like ands or ors.

What do you guys think this net is going to draw? Anyone could volunteer, I'm not going to ask

anyone to give this answer. That's a little bit tricky, because usually if you had this many

nodes, you could easily draw a box and box off the minuses from the pluses. However, it

draws this. And it asks what is the error? The error is-- oh yeah, it even tells you the error is

1/8, because why? These are all adders. You can't actually do anything logical. This entire net

boils down to just one node, because it just adds up every time. It never takes a threshold at

any point. So you can't turn into logical ones and zeroes, because it's basically not digital at all,

its analog. It's giving us some very high number. So it all boils down to one cut off. And that's

the best one. The one that I drew right here. OK.

Did that not make sense to you? That's OK. This problem is much harder. And putting them

both on the same quiz, was a bit brutal, but by the time you're done with this, you'll understand

what a neural net can do or not. I put these in simplified form because of the fact that we don't

care about their values or anything like that. But inside of these little circles is a sigmoid, the

multipliers and the summers are implied. I think in the simplified form when we're not actually

doing backpropagation is easier to view it, and see how many nodes there are. For the same

reason you asked your question about how many there are. So all of those big circles are

node. And in those nodes is a sigmoid now, not those crazy adders.

We have the following problem. We have to try to match each of a, b, c, d, e, f to 1, 2, 3, 4, 5,

6, using each of them only once. That's important, because some of the more powerful

networks in here can do a lot of these. So it's like yes, the powerful networks could do some of

the easier problems here, but we want to match each net to a problem it can do, and there is

exactly one mapping that will map-- that is one to one, and maps exactly, uses all six of the

nets to solve all six of these problems here.

So some of you may be going like, what? How am I going to solve these problems? I gave

away a hint before, which is that each node in the neural net, each sigmoid node can usually

draw one line on the-- it can draw one line into the picture. The line can be diagonal if that

nodes receives both of the inputs, which is here, i 1 and i 2. See there is an i 1 and an i 2 axis.

Like x- and a y-axis. The node has to be horizontal, or vertical, if-- sorry, the line has to be



horizontal or vertical if the node only receives one of the inputs. And then, if you have a

deeper level, these secondary level nodes can sort of do a logical, can do some kind of

brilliant thing like and or or of the first two, which can help you out. All right. And so let's try to

figure it out.

So right off the bat, and I hope that people will help and call this out, because I know we don't

have enough time that I can force you guys to all get it. But right off the bat, which one of

these looks like it's the easiest one?

STUDENT: Six.

PROFESSOR: Six. That's great. Six is definitely the easiest one. It's a single line. So this is just how I would

have solved this problem, is find the easiest one. Which of these is the crappiest net?

STUDENT: A.

PROFESSOR: A is the crappiest net. But there's no way in hell that A is going to be able to get any of these

except for six. So let's, right off the bat, say that six is A. All right. Six is A. That's A. We don't

have to worry about A. OK. Cool. Now let's look at some other ones that are very interesting.

All the rest of these draw two lines, well these three draw two lines. These three draw three

lines. They draw a triangle. So despite the fact that this c is a very powerful node, that indeed,

with three whole levels here of sigmoids, it looks like there's only two that's in our little stable of

nets that are equipped to handle number one and two. And those are? E and F, because E

and F have three nodes at the first level. They can draw three lines. And then they can do

something logical about those lines, like for instance, maybe, if it's inside all of those lines.

There's a way to do that. You just-- basically you can give negative and positive weights as

you so choose to make sure that it's under certain ones, above other ones, and then make the

threshold such that it has to follow all three of your rules. So between E and F, which one

should be two and which one should be one. Anyone see?

Well let's look at two and one. Which one is easier to do? Between two and one. Two. It's got a

horizontal and a vertical. One has all three diagonal. And which one of these is a weaker net,

between E and F. F. F has one node that can only do a horizontal, and one node that can only

do a vertical line. So which one is F going to have to do? Two. And E does what? Good job,

guys. Good job, you got this.

So now let's look at the last three. Number three is definitely the hardest. It's an exceller.



Those of you who've played around with double o 2 kind of stuff, or even just logic, probably

know that there is no way to make a sort of simple linear combination in one level of logic to

create an x or. x or is very difficult to create. There are some interesting problems involving

trying to teach an exceller to a neural net. Because a neural net is not to be able to get the x

or, because of the fact that you can tell it, OK, I want this one to be high, and this one to be

low. That's fine. You say these both have to be high. That's fine. It's hard to say, it's pretty

much impossible to say, this one or this one, but not the other, because need to be high in a

single node, because of the fact that if you just play with it, you'll see.

You need to set a threshold somewhere, and it's not going to be able to distinguish between, if

the threshold is set such that the or is going to work, the whole or is going to work. It's going to

accept when both of them are positive as well. So how we can do x or? We need more logic.

We need to use some combinations of ands and ors in a two level way. To do that we need

the deepest neural net that we have. There's only one that's capable of that. And that is? It's

C.

There are many different ways to do it. Let's think of a possibility. i 1 and i 2 draw these two

lines. Let's call these one, two, three, four, five, node 1 and node 2 draw these two lines. And

I'll just sort of draw it here for you guys. Then maybe node 3 gives value to-- yeah, let me see-

- node three can give value to perhaps-- let's see-- node 3 can give value to everything that is-

- there are a lot of possibilities here. Node 3 can give value to everything that is up here.

Actually node 3 can give value to everything except for this bottom part, and then node 4 could

give value to say-- doesn't do it yet, but there's a few-- there's a few different ways to do it if

you played around. The key idea is that node 3 and node 4 can give value to some

combination and or or not, and then node 5 can give value based on being above or below a

certain threshold, combination of 3 and 4. You can build an exceller out of the logic gates.

I will ponder on that in the back burner for a moment, as we continue onward, but clearly C

has to do number three. OK. Now we're left with four and five. I think, interestingly, five looks

like it may be more complicated than four, because of the fact that it needs to do both different

directions instead of two of the same direction. So however, just the idea of the one with the

fewer lines, being a simpler one, may not get us through here. And there's a reason why. Look

what we have left to use. We have to use D or B. What is the property of the two lines that D

can draw? D being the simpler one. One horizontal, one vertical, that's right. So even though it

may look simpler to just have two horizontal lines, it actually requires B. B is the only one that



can draw two horizontal lines because D has to draw one horizontal and one vertical. So that

leaves us with, B on this, D on this. Excellent, we have a question. I would've thought it would

have been possible that we had no questions, or maybe I just explained it the best I ever have.

Question.

STUDENT: I didn't get why B has to be two horizontal lines.

PROFESSOR: All right. So the question is, I don't understand why B to be two horizontal lines. The answer is,

it doesn't. B can be anything, but D can't be two horizontal lines. And so by process of

elimination, it's B. Well take a look at D, right. So D has three nodes, one, two, three. Node 1

and node 2 can just draw a line anywhere they want, involving the inputs they receive. What

input does node 1 receive? Let's go to node 1. So it can only make a cut off based on i 1. So

therefore, it can only draw by making the cut off above and below a certain point. Node 1 can

only draw vertical lines. Node 2 can only draw a horizontal line, because it can only make a cut

off based on where it is an i 2. Therefore they can't both draw a horizontal. That's why this is

the trickiest part. This last part, because B is more powerful. B does not only have to do two

horizontal lines. It can do two diagonal lines. It can do anything it wants. It just happens that it's

stuck doing this somewhat easier problem, because the fact that it is the only one left that has

the power to do it.

So let's see, we're done, and we'd have aced this part of the quiz that like no one got, well not

no one, but very few people got, when we put it on in 2008. The only thing we have left to ask

is-- let me see-- yeah, the only thing we have left to ask is what are we going to do here for

this? All right. Let's see. For the x or, let's see if I can do this x or. OK. How about this one.

Right. I'm an idiot. This is the easiest way. Number one draws this line. Number two draws this

line. Number three ends the line, the two lines. Number three says only if both of them are

true, will I accept. Number four maps the two lines. And number five ors between three and

four. Thank you. No, it's not that hard. I just completely blanked, because there's another way

that a lot of people like to do it. It involves drawing in a lot of lines, and then making the clef b

2. But I can't remember it at the moment. Or there any other questions? Because I think if you

have a question now, like four other people have it and just aren't raising their hand. So ask

any questions about this drawing thing. Question?

STUDENT: Why do we do this?

PROFESSOR: Why do we do this drawing thing? That's a very good question. The answer is so that you can



see what kinds of nets you might need to use in these simple problems, to answer these

simple problems. So that if Athena forbid that you have to use a neural net in a job somewhere

to do some actual learning, and you see some sort of quality about the problem, you know not

to make a net that's too simple, for instance. And you wouldn't want a net that is more complex

than it has to be. So you can sort of see what the net's do at each level, and more visibly

understand. I think a lot of people who drew problems like this just want to make sure people

know, oh yeah, it's not just these numbers that we're mindlessly backpropagating from the

other part of the problem to make them higher or lower.

This is what we're doing at each level. This is the space that we're looking at. Each node is

performing logic on the steps before. So that if you actually have to use a neural net later on,

down the road, then you'll be able to figure out what your net's going to need to look like. You'll

be able to figure out what it's doing. At least as well as you can figure out what it's doing, for a

neural net, since it often will start getting up these really crazy numbers, will have all sorts of

nodes in it, and like a real neural net that's being used nowadays, there'll be tons of nodes,

and you'll just see the numbers fluctuate wildly, and then suddenly it's going to start working or

not. That's a good question. Any other questions? We still have a few minutes. Not many, but

a few. Any other questions about any of this stuff? Sorry.

STUDENT: Talk about what you just asked. Just because we draw it, does the machine need to learn--

PROFESSOR: You're confused why the machine is run what, by the pictures on the right? Oh OK. Machine

does not have to learn by drawing pictures and calling them in. Let me give you some real

applications. My friend at the University of Maryland recently actually used neural nets

because, yeah, he actually did, because of the fact that he was doing an game plan

competition, where the game was not known when you were designing your AI. It had to be

able to-- there was some very elegant, general game solver thing that you had be able to hook

up into, and then they made up the rules, and you had a little bit of time, and then it started.

Some of the AI's, what they did was, they trained, once they found out what the rules were on

their own, with the rules, in his case he had a neural net, because it was so generic, you just

have a web of random gook. He thought it could learn anything, and then-- he never did tell

me how it went, probably didn't go well. But maybe it did. It basically tried to learn some things

about the rules. Some of the other people who are more principled game players actually tried

to find out fundamental properties of the space of the rules by testing a few different things, so

they could view more knowledge is less search so they could do less search when the actual



game playing came on. And then when the actual game playing came on, pretty much

everyone did some kind of game tree based stuff.

He's telling me that a lot of Monte Carlo based game tree stuff that is this very non

deterministic as what they're doing nowadays, rather than what determines the alpha beta,

although he said it converges to alpha beta, if you've given enough time. That's what he told

me, But that someone I know who is using neural nets. I've also in a cognitive science class I

took, saw neural nets that tried to attach like qualities to objects, by having just this huge, huge

number of nodes in levels in between, and then eventually it was like, a duck flies, and you're

like, how's it doing this again? I'm not sure, but it is. So the basic idea is that when-- one of the

main reasons that neural nets were used so much back in the day is that people on many

different sides of this problem, cognitive science, AI, whatever, were all saying, wait a minute,

there's networks of neurons, and they can do stuff, and we're seeing it in different places. And

when you've seen it in so many different places at once, must be a genius idea that's going to

revolutionize everything.

And so then everyone started using them to try to connect all these things together, which I

think is a noble endeavor, but unfortunately people just stopped using it. It didn't work as they

wanted. It turned out that figuring out our neurons worked in our head was not the way to

solve all AI hard problems at once. And they fall into disfavor, although are still used for some

reasons, like the sum is like that. So we wouldn't use it just to draw these pictures. The reason

why we have these pictures is because we give you simple nets that you can work it out by

hand on the quiz. Any net that is really used nowadays would make your head explode, if we

tried to make you do something with it on the quiz. It would just be horrible.

So I think that's a good question. If there's no other questions, or even if they are, because we

have to head out, if there's any other questions, you can see me as I'm walking out.


