MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Enforcing Modularity

i

module per computer

|

module per virtual computer

VM Virtual processor

Virtual Processor

Each program — “Thread” of execution

T

VS

Preemptive

proc

Instructions,
registers, PC, SP

stack

VS

Yield()

yield {
Save state
Schedule next thread
dispatch next thread

}

int table[NUM_THREADS]
INt next
iInt me & local to thread

Stack Example

SP *

.

108

T1: Halo

5

Stack

208

104

—>204

100

200

Thread

SP

1

104

2

148

T2: Net T 12
1000
yield” vyield
o _ 51000 -
yield
1025 "> 148 1025

Preemptive scheduling
(No explicit yield)
Processor line

checked by puProc before each instr
If high, calls “gate”

Timer interrupt

Kernel calls yield() on current thread
Save state
schedule + run next thread

Processes — AS + thread(s)

Kernel support

alloc AS, phys. mem, page map
load code into mem, map into AS
create thread, add to thread table

create

destroy ——> remove AS
remove thread from table

Layering of Threads

Halo

AS

share
fate

enf

Emacs

AS

~modularity S

UProc

Parent threads
- Scheduling policy
- Switching mech.

Layering of Threads

Parent threads

Q Q Q - Scheduling policy

I ﬁ - Switching mech.

kernel

UProc

Coordinating Access
Sequence Coord

wailt(v, cond)
Web Server signal (V)

Net | D|Sk

Thread Req Thread

while(true) while(true)
while(empty()); m = next_blk(Q)
m = dequeue() while(fullO){};
process(m) enqueue(m)

	Enforcing Modularity
	Virtual Processor
	Yield()
	Stack Example
	Preemptive scheduling
	Processes – AS + thread(s)
	Layering of Threads
	Layering of Threads
	Coordinating Access

