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Enforcing Modularity
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module per computer

|

module per virtual computer

VM Virtual processor




Virtual Processor

Each program — “Thread” of execution

T

VS

Preemptive
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Instructions,
registers, PC, SP

stack
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Yield()

yield {
Save state
Schedule next thread
dispatch next thread

}

int table[NUM_THREADS]
INt next
iInt me & local to thread



Stack Example
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Preemptive scheduling
(No explicit yield)
Processor line

checked by puProc before each instr
If high, calls “gate”

Timer interrupt

Kernel calls yield() on current thread
Save state
schedule + run next thread



Processes — AS + thread(s)

Kernel support

alloc AS, phys. mem, page map
load code into mem, map into AS
create thread, add to thread table

create

destroy ——> remove AS
remove thread from table



Layering of Threads
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AS

share
fate
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Parent threads
- Scheduling policy
- Switching mech.



Layering of Threads

Parent threads

Q Q Q - Scheduling policy

I ﬁ - Switching mech.

kernel

UProc




Coordinating Access
Sequence Coord

wailt(v, cond)
Web Server signal (V)

Net | D|Sk

Thread Req Thread




while(true) while(true)
while(empty()); m = next_blk(Q)
m = dequeue() while(fullO){};
process(m) enqueue(m)
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