
MIT OpenCourseWare
http://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Enforcing Modularity

module per computer

module per virtual computer

VM Virtual processor



Virtual Processor
instructions, 
registers, PC, SP
stack

Each program – “Thread” of execution

Cooperative
vs

Preemptive

T1

T2

proc

Same AS
vs
Diff



Yield()

yield {
Save state
Schedule next thread
dispatch next thread

}

int table[NUM_THREADS]
int next
int me local to thread



Stack Example

208
T2: Net
1000

1025

T1: Halo
5

204
200

108
104
100

Thread SP
1
2

104
204
148

T1 T2…
…

.

…
…

.

yield yield

148 1025

…
…

.

yield

5 1000

SP * Stack



Preemptive scheduling
(No explicit yield)

Timer interrupt
Processor line
checked by µProc before each instr
If high, calls “gate”

Kernel calls yield() on current thread
Save state
schedule + run next thread



Processes – AS + thread(s)

Kernel support

alloc AS, phys. mem, page map
load code into mem, map into AS
create thread, add to thread table

create

destroy remove AS
remove thread from table



Layering of Threads

Halo Parent threads
- Scheduling policy
- Switching mech.

Emacs ASAS

enf 
modularityshare 

fate

µProc



Layering of Threads

interrupt

Parent threads
- Scheduling policy
- Switching mech.

µProc

main

EmacsHaloUser

kernel

…



Coordinating Access
Sequence Coord

wait(v, cond)
signal(v)Web Server

Net
Thread

Disk
Req Thread



while(true)
while(empty());
m = dequeue()
process(m)

while(true)
m = next_blk()
while(full()){};
enqueue(m)


	Enforcing Modularity
	Virtual Processor
	Yield()
	Stack Example
	Preemptive scheduling
	Processes – AS + thread(s)
	Layering of Threads
	Layering of Threads
	Coordinating Access

