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L12: end to end layer

Dina Katabi

Some slides are from lectures by 
Nick Mckeown, Ion Stoica, Frans 

Kaashoek, Hari Balakrishnan, Sam 
Madden, and Robert Morris
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• Packets may be:
• Lossed
• Delayed (jitter)
• Duplicated 
• Reordered
• …

• Problem: Inconvenient service for applications

• Solution: Design protocols for E2E modules
• Many protocols/modules possible, depending on requirements

Network layer provides
best effort service



This lecture: some E2E properties

• At most once
• At least once

• Exactly once?

• Sliding window
• Case study: TCP
• Tomorrow: Network File System (NFS)



At Least Once

• Sender persistently sends until it receives an ack
• Challenges:

• Duplicate ACKs
• What value for timer

Timeout and 
Retransmission

an RTT 
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Duplicate ACK problem

• Problem: Request 2 is not delivered
• violates at-least once delivery

timeout 
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Solution: nonce

• Label request and ack with unique identifier that is never re-used

timeout 
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Engineering a nonce

• Use sequence numbers
• Challenges: 

• Wrap around?
• Failures?
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• Fixed is bad. RTT changes depending on 
congestion
• Pick a value that’s too big, wait too long to 

retransmit a packet 
• Pick a value too small, generates a duplicate 

(retransmitted packet).

• Adapt the estimate of RTT adaptive timeout

Timer value



Adaptive Timeout: 
Exponential weighted moving averages

• Samples S1, S2, S3, ..
• Algorithm

• EstimatedRTT = T0

• EstimatedRTT = α S + (1- α) EstimatedRTT
• where 0 ≤ α ≤ 1

• What values should one pick for α and T0?
• Adaptive timeout is also hard



At Most Once Challenges
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• Server should send result preferably
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Idea: remember sequence number

client server
Req 1
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• Server remembers also last few responses
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Problem: failures
client server
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• Performed request 1 twice!
• How to maintain the last nonce per sender (tombstone)?

• Write to non-volatile storage?
• Move the problem?  (e.g., different port number)
• Make probability of mistake small?

• How about exactly once?  (Need transactions)
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How fast should the sender sends?

• Waiting for acks is too slow
• Throughput is one 

packet/RTT
• Say packet is 500 bytes
• RTT 100ms 
• Throughput = 40Kb/s, 

Awful!

• Overlap pkt transmission

Host A Host B
Data 1

Data 1

Data 2
Data 2

ACKACK



Send a window of packets

• Assume the receiver 
is the bottleneck
• Maybe because the 

receiver is a slow 
machine

• Receiver needs to 
tell the sender when 
and how much it can 
send

• The window 
advances once all 
previous packets are 
acked too slow
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Sliding Window

• Senders advances 
the window 
whenever it 
receives an ack
sliding window

• But what is the 
right value for the 
window?
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The Right Window Size

• Assume server is bottleneck
• Goal: make idle time on server zero
• Assume: server rate is B bytes/s
• Window size = B x RTT
• Danger: sequence number wrap around

• What if network is bottleneck?
• Many senders?
• Sharing?
• Next lecture



“Negative” ACK

• Minimize reliance on timer
• Add sequence numbers to 

packets
• Send a Nack when the 

receiver finds a hole in 
the sequence numbers

• Difficulties
• Reordering
• Cannot eliminate acks, 

because we need to ack the 
last packet
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E2E layer in Internet

Network

Link

Transport

The 4-layer Internet model

ApplicationHTTP, RTP, Sun RPC, …

IP

TCP or UDP

Ethernet, WiFI, ...

End-to-End 
Layer



UDP



Transmission Control Protocol (TCP)

Host A Host B

Syn x

Data x+1,  ack y+1

ack x+1, syn y

x+1, y+1

y, x+1x,?

• Connection-oriented
• Delivers bytes at-

most-once
• Bidirectional

• ACKs are piggybacked



TCP header



Closing a TCP connection

Host A Host B

fin x

ack x+1
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timeout closed



Data exchange occur
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