
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

L12: end to end layer

Dina Katabi

Some slides are from lectures by
Nick Mckeown, Ion Stoica, Frans

Kaashoek, Hari Balakrishnan, Sam
Madden, and Robert Morris

End-to-end layer

stubstub

Network Layer

Link Layer

presentation Layer

End-to-end layer

RPC RPC

HD

HD

HD

HD HD

HD

HeaderData HeaderData

client server

• Packets may be:
• Lossed
• Delayed (jitter)
• Duplicated
• Reordered
• …

• Problem: Inconvenient service for applications

• Solution: Design protocols for E2E modules
• Many protocols/modules possible, depending on requirements

Network layer provides
best effort service

This lecture: some E2E properties

• At most once
• At least once

• Exactly once?

• Sliding window
• Case study: TCP
• Tomorrow: Network File System (NFS)

At Least Once

• Sender persistently sends until it receives an ack
• Challenges:

• Duplicate ACKs
• What value for timer

Timeout and
Retransmission

an RTT

client server
DataData

ACKACK

client server
DataData

DataData

X

Duplicate ACK problem

• Problem: Request 2 is not delivered
• violates at-least once delivery

timeout

Client Server
Req 1

Req 1

Req 1
Req 1

ACKACK

Req 2
Req 2

Req 3
Req 3

ACKACK

Solution: nonce

• Label request and ack with unique identifier that is never re-used

timeout

Client Server
Req N1

Req N1

Req N1
Req N1

ACK N1
ACK N1

Req N2
Req N2

Req N2
Req N2

ACK N1
ACK N1

N1

N2

Engineering a nonce

• Use sequence numbers
• Challenges:

• Wrap around?
• Failures?

Client Server
Req 1

Req 1

Req 1
Req 1

ACK 1ACK 1

Req 2
Req 2

Req 2
Req 2

ACK 1ACK 1

1

2

timeout

• Fixed is bad. RTT changes depending on
congestion
• Pick a value that’s too big, wait too long to

retransmit a packet
• Pick a value too small, generates a duplicate

(retransmitted packet).

• Adapt the estimate of RTT adaptive timeout

Timer value

Adaptive Timeout:
Exponential weighted moving averages

• Samples S1, S2, S3, ..
• Algorithm

• EstimatedRTT = T0

• EstimatedRTT = α S + (1- α) EstimatedRTT
• where 0 ≤ α ≤ 1

• What values should one pick for α and T0?
• Adaptive timeout is also hard

At Most Once Challenges

client server
Req 1

Req 1

req 1
req 1

Ok

ACK 1
Ok

ACK 1

ACK 1ACK 1

• Server shouldn’t process req 1
• Server should send result preferably

1

2

Process request 1

Process request 1

Idea: remember sequence number

client server
Req 1

Req 1

req 1
req 1

Ok

ACK 1
Ok

ACK 1

• Server remembers also last few responses

1

1

2

Ok
ACK 1
Ok

ACK 1

Ok

ACK 1
Ok

ACK 1
Resend ACK 1

Process request 1

Problem: failures
client server

Req 1
Req 1

req 1
req 1

Ok

ACK 1
Ok

ACK 1

• Performed request 1 twice!
• How to maintain the last nonce per sender (tombstone)?

• Write to non-volatile storage?
• Move the problem? (e.g., different port number)
• Make probability of mistake small?

• How about exactly once? (Need transactions)

1

1

2

Ok
ACK 1
Ok

ACK 1

Ok

ACK 1
Ok

ACK 1

0

0

1

Ok
ACK 1
Ok

ACK 1

How fast should the sender sends?

• Waiting for acks is too slow
• Throughput is one

packet/RTT
• Say packet is 500 bytes
• RTT 100ms
• Throughput = 40Kb/s,

Awful!

• Overlap pkt transmission

Host A Host B
Data 1

Data 1

Data 2
Data 2

ACKACK

Send a window of packets

• Assume the receiver
is the bottleneck
• Maybe because the

receiver is a slow
machine

• Receiver needs to
tell the sender when
and how much it can
send

• The window
advances once all
previous packets are
acked too slow

Host A Host B

Send?

OK, 3 pkts

Idle

2-
4

5-
7

Sliding Window

• Senders advances
the window
whenever it
receives an ack
sliding window

• But what is the
right value for the
window?

Host A Host B

Send?

OK, 3 pkts

Idle

2-
4

3-
5

The Right Window Size

• Assume server is bottleneck
• Goal: make idle time on server zero
• Assume: server rate is B bytes/s
• Window size = B x RTT
• Danger: sequence number wrap around

• What if network is bottleneck?
• Many senders?
• Sharing?
• Next lecture

“Negative” ACK

• Minimize reliance on timer
• Add sequence numbers to

packets
• Send a Nack when the

receiver finds a hole in
the sequence numbers

• Difficulties
• Reordering
• Cannot eliminate acks,

because we need to ack the
last packet

Host A Host B

D1
D2
D3 X

D2

D1

D3
D4

Nack-2

E2E layer in Internet

Network

Link

Transport

The 4-layer Internet model

ApplicationHTTP, RTP, Sun RPC, …

IP

TCP or UDP

Ethernet, WiFI, ...

End-to-End
Layer

UDP

Transmission Control Protocol (TCP)

Host A Host B

Syn x

Data x+1, ack y+1

ack x+1, syn y

x+1, y+1

y, x+1x,?

• Connection-oriented
• Delivers bytes at-

most-once
• Bidirectional

• ACKs are piggybacked

TCP header

Closing a TCP connection

Host A Host B

fin x

ack x+1

y, xx,y

fin y

ack y+1timed wait

closed

timeout closed

Data exchange occur

Active close

Closed

Listen

Listen

(Start)

Established

Closed

ClosingFIN WAIT 1 Close WAIT

Last ACK

Timeout

ACK

ACKACK

FIN/ACK

FIN/ACK

FIN/ACK

SYN+ACK/ACK

SYN/SYN+ACK (simultaneous open)

Close/FIN

Close

Connect/SYN (step 1 of the 3 way handshake)

(step 3 of the 3 way handshake)

Close

ACK

Close/FIN

FIN+ACK/ACK

(Go back to start)

TIMED WAIT

Close/FIN

Passive close

FIN WAIT 2

SYN Sent
 SEND/SYN

SYN
Received

SYN/SYN+ACK (step 2 of the 3 way handshake)

RST

Unusual event Client/reciever path Sender/server path

Figure by MIT OpenCourseWare.

	L12: end to end layer
	Network layer provides�best effort service
	This lecture: some E2E properties
	At Least Once
	Duplicate ACK problem
	Solution: nonce
	Engineering a nonce
	Adaptive Timeout: �Exponential weighted moving averages
	At Most Once Challenges
	Idea: remember sequence number
	Problem: failures
	How fast should the sender sends?
	Send a window of packets
	Sliding Window
	The Right Window Size
	“Negative” ACK
	E2E layer in Internet
	UDP
	Transmission Control Protocol (TCP)
	TCP header
	Closing a TCP connection

