
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Nickolai Zeldovich

key ideas for today:
open design
identity vs authenticator
authenticating messages vs principals (message integrity, bind data)
public key authentication

--- new board ---

security model
C - I - S
 last time:

talked about some general ideas for how to build secure systems
defensive design: expect compromise, break into parts, reduce privilege
last recitation, saw examples of what can cause parts to be compromised

for the rest of the lectures:

assume that we can design end-points to be correct & secure

(hard but let's go along with this for now)

figure out how to achieve security in the face of attackers

attackers can look at, modify, and send messages

basic goals that we want to achieve

inside the server: guard - service

authentication

authorization

confidentiality

--- new board ---

basic building block: crypto
let's look at how you might implement encryption
two functions, Encrypt and Decrypt

 C -> E -> I -> D -> S

 military systems, E and D are secret

closed design

 problem: if someone steals your design, you're in big trouble

hard to analyze system without at the same time losing secrecy

key principle in building secure systems: minimize secrets!

--- new board ---

open design
big advantage: if someone steals design & key, can just change keys
can analyze system separately from the specific secret key
minimizes the secrets

 important principle in designing systems:
figure out precisely what secrets distinguish bad guys from good guys
it's very hard to keep things secret
knowing what's important will allow you to focus on the right things

 same diagram but with keys going into E & D

example of symmetric key crypto: one-time pad
XOR the message with random bits, which are the key
quickly describe XOR, why you get the original message back
problem: key is giant (but scheme is perfectly secure)

stream ciphers: various algorithms that generate random-looking bits
no longer perfectly unbreakable, just requires lots of computation
SLIDE: RC4

attack if keys reused
C->S: Encrypt(k, "Credit card NNN")
S->C: Encrypt(k, "Thank you, ...")

 XOR two ciphertexts and known response to get unknown request message!
never reuse keys with symmetric crypto! (one-time pad!)

--- new board ---

previously needed shared keys, doesn't scale

RSA: public-key cryptography
keys for encryption, decryption differ
SLIDE: RSA algorithm

short example computation?

p = 31, q = 23, N = 713

e = 7, d = 283

m = 5

c = m^e mod N = 5^7 mod 713 = 408

m = c^d mod N = 408^283 mod 713 = 5

 difficult to generate e from d, and vice-versa

assumption: factoring N is hard!

 much more computationally expensive than symmetric-key crypto!
important property: don't need a shared key between each party

encrypting a message for someone is diff. than decrypting it
server can use the same key for many clients sending to it

 similarly tricky to use in practice

how to represent messages?

small messages are weak

large messages are inefficient

can multiply messages together

need something called padding

crypto mechanisms rely on computational complexity
pick key sizes appropriately -- "window of validity"

--- new board ---

principal authentication
principal/identity: a way of saying who you are
authenticator: something that convinces others of your identity

open design principle sort-of applies here

want to keep identity public, authenticator private
focus on what's distinguishing good guy from bad guy

usually there's a rendezvous to agree on an acceptable authenticator

authenticator types: right side of the board
real world: SSN

bad design: confuses principal's identity and authenticator
passwords

assuming user is the only one that knows password, can infer that
if someone knows the password, it must be the user

server stores list of passwords, which is a disaster if compromised
common solution: store hashes of passwords

define a cryptographic hash:
H(m) -> v, v short (e.g. 256 bits)
given H(m), hard to find m' such that H(m') = H(m)

foils the timing attack we had last time
in theory hard to reverse
dictionary attack: try short character sequences, words

physical object

magnetic card: stores a long password, not very interesting

smartcard: computer that authenticates using crypto

biometric
oldest form of authentication: people remember faces, voices
can be easy to steal (you leave fingerprints, face images everywhere)
unlike a password, hard to change if compromised
more of an identity than authentication mechanism

 need to trust/authenticate who you're providing your authenticator to!
fake login screen, fake ATM machine can get a user's password/PIN
next recitation you'll read more about what happens in the real world
web phishing attacks: convincing you to authenticate to them

--- new board ---

suppose we trust our client (e.g. laptop, smartcard, ...)
how to design protocol?

board: C - I - S diagram
client sending a message saying "buy 10 shares of Google stock"

simple version: just send password over the network
attacker has password, can now impersonate user

better version? send a hash of a password
attacker doesn't get our password (good, probably)
but the hash is now just as good -- can splice it onto other msg!

 ** need both authentication AND integrity **

 better? include checksum of message, eg CRC

attacker can re-compute checksum! need checksum to be keyed

 better yet: send a hash of [message + password], called a MAC

message authentication code

if you're going to do this: look up HMAC

best: establish a session key, minimize use of password (long-term secret)
send a message to the other party saying "i will use this key for a bit"
use that key to MAC individual messages

