
MIT OpenCourseWare 
http://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.003 Lecture 7: Threads and Condition Variables 

topic: virtual processors / threads
monday: client/server / bounded buffer w/ one CPU per program
today: more programs than CPUs
only one CPU (no busy looping!)
or a few CPUs, many more programs


also fewer programs than CPUs (CPUs may need to be idle!)

goal: virtualize the processor

multiplex CPU among many "threads" 

thread abstraction
 state of a runnable program
so CPU multiplexing == suspend X, resume Y, suspend Y, resume X
other abstractions for multiplexing CPU are possible
this is a useful and traditional one


 controlled by "thread manager" or "scheduler"

what is the required state?

how to save state for suspend?

how to resume from saved state?


send() from previous lecture
illustrates why we want threads and multiplexing
[send slide]
loops waiting for BB to be non-full
burns up a lot of CPU time
if one CPU, maybe receive will never run!
we'd like to let receive() run... 

send w/ yield
[send/receive slide]
yield() gives up the CPU
lets other threads run
 e.g. a receive() may have been waiting and called yield()
someday yield() will return

after other thread yield()s

e.g. it tries to receive() but BB is empty 

how to implement yield()?
yield() is the guts of the thread implementation
suspend one, resume another 

data:
 threads[] table: state, sp
thread stack 0, stack 1, ...
cpus[] table: thread
t_lock (coarse granularity...) 

[yield version 1 slide] 

what happens in yield?
send calls yield
how does it know what thread is running?
per-CPU register CPU() contains cpu #

cpus[] says what's happening on each CPU


RUNNING -> RUNNABLE




 RUNNING means some CPU executing it now
RUNNABLE means not executing, but could


save SP (the CPU register)

look for a different thread to run

 ignore the RUNNING ones

mark "new" thread as RUNNING, so no other CPU runs it

restore saved SP of new thread

 that is, load it into CPU's SP register

return


questions:
what state does yield save?

just SP

what is on the stack? local vars, RA, send()'s saved registers &c

we might need to save/restore callee-saved registers too


what happens in return after restoring?
this use of SP might not work, depends on compiler

I'm assuming compiled code does not change SP in body of yield()

and that return basically just pops RA off stack

more complex in real life


what does t_lock protect?

indivisible set of .state and .sp

indivisible find RUNNABLE and mark it RUNNING

 don't let another CPU grab current stack until we've switched


Questions? 

motivate notify / wait
[send with yield slide]
send() and receive() still chew up CPU time
e.g. send() waits for receive to free up a slot in BB
e.g. receive() waits for BB to be non-empty

repeated yield() expensive if many threads waiting


want send to suspend itself

have receive wake it up when there is space

do it in a general way

don't want receive to have to know abt all threads waiting in send


"condition variable"
 object that acts as a rendezvous
two methods:
 wait(cvar, lock) -- release(lock), yield, return after notify(cvar)
notify(cvar) -- wake up all threads currently in wait(cvar)

notify has no memory: if no threads wait()ing, no effect at all

wait() and then notify(): wait returns

notify() and then wait(): wait does not return


each BB has two condition variables:
 notfull (send waits on this if full)
notempty (recv waits on this if empty) 

[send with wait/notify]
if full, waits, receive will someday free up a slot and notify(p.notfull)
waits in a loop, re-checks after wait returns
maybe multiple senders waiting, but only one slot freed up

that is, wait() returning is only a hint




 you always ought to explicitly check the condition

notifies notempty in case one or more receives are waiting

no harm if no-one is waiting


holds lock across while test and use of buffer

 so no other send() can sneak in and steal buffer[] slot


why does wait() release p.lock? why not have send() release it?
i.e. why not
while p.in - p.out == N:

release

 wait(p.notfull)

acquire


notify might occur between release and wait

no effect, since no threads waiting at that point

then send()'s wait() won't return, even though there's a msg!


this is the "lost notify" problem 

avoiding lost notifies
wait(cvar, lock)

caller must hold the lock

 wait() atomically releases lock and marks thread as waiting


so no notify can intervene
re-acquires lock before returning

notify(cvar)
caller must hold the lock

 so, implicitly, condition variable always associated with a particular lock 

implementing wait
thread table additions:

 new state: WAITING

 threads[].cvar (so notify can find us)

big Q: where to release the lock?

[wait() slide]

acquire t_lock first, then release the lock, then WAITING

ensure that notify() holds both!

b.t.w. need to modify yield()

[wait+notify() slide]

notify() caller holds lock, notify() acquires t_lock

so receive's notify() holds both locks
either executes before send acquires lock

or after sending thread suspends

(but NOT between send's check and suspension)


if before:

 send() acquire waits until receive is done

send() will see empty slot and not wait


if after:

 notify() will see WAITING send thread, and mark it RUNNABLE


but now we must revisit yield()
[yield v1 again]
t_lock already held, not need to set state (easy)
yield might find there is nothing RUNNABLE!!! (harder)
this thread WAITING, but receive() running on another CPU

loops forever while holding t_lock

so no other CPU can execute notify()

so no thread will ever be RUNNABLE




 system will hang 

how to fix yield()?
[yield version 2 slide]
don't acquire t_lock, don't set to RUNNABLE
release+acquire in "idle loop"
still spins indefinitely while no runnable threads
BUT lets other CPUs execute notify()


t_lock held on return, but wait() releases it

note I've also set the SP to a per-CPU stack, before idle loop

why?

yield() v1 runs idle loop on calling thread's stack

someone might notify() it

some other CPU in idle loop might run the thread

now two CPUs are executing on the same stack

e.g. calling functions like acquire, which modify the stack


thus per-CPU stack for yield() to use when not in any thread


pre-emptive scheduling
what if a thread never calls yield()?

we are in trouble, no way to multiplex that CPU

compute-bound, or long code paths, or broken user programs

too annoying to require programmer to insert yield()s


we want forcible periodic yield 

how to pre-empt?
timer h/w, generates an interrupt 10 times per second
interrupt saves state, jumps to handler in kernel
timer():
yield()

return


will the resulting stack resume correctly?
interrupt pushes PC + regs on current thread's stack
when not running, stack looks like:
 ...

 RA to thread at time of interrupt

registers

RA to timer()


so yield() returns to interrupt handler, which returns to interrupted code 

what if timer interrupt while you are in yield already?
would call yield recursively
deadlock: already holding t_lock
acquire should disable interrupts
release should re-enable


 not just for here, but all uses of locks


what if timer interrupt after idle loop releases t_lock?
again, recursive yield()
but invalid cpus[][CPU()].thread
so fix yield() to null out .thread
and fix timer interrupt to yield only if valid .thread 

Summary
closing thought: how to kill a thread? might be running... 



 threads are virtual processors
allow many threads, few CPUs
the foundation of time-sharing

we had to integrate:
yield()
condition variables
 interrupts for pre-emption
missing: creation (easy), exit (harder) 


