
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.033 Lecture 5: Operating System Organization

Plan for next few lectures
 general topic: modularity
just talked about one module per computer (c/s)
more details on net-based c/s later in course

now: modules within one computer

L5: o/s organization -- tools for enforced modularity

L6: concurrency

L7: threads

 o/s interesting design artifact in itself

O/S Goals
multiplexing: one computer, many programs
cooperation: help programs interact / communicate / share data
protection (bugs, privacy)
portability (hide h/w differences and e.g. amt of RAM)
performance (improve, and don't get in the way)

Key techniques to achieve those goals?
virtualization
 abstraction

Virtualization
 computer has h/w resources
a few CPUs, one mem system, one disk, one net i/f, one display
but you want to run many programs (X, editor, compiler, browser, &c)
idea: give each program a set of "virtual" resources
as if it had its own computer

CPU, memory

Virtualization example: CPU
multiplex one CPU among many programs
so each program thinks it has a dedicated CPU
give the CPU to each in turn for 1/n-th of the time
h/w timer that interrupts 100 times/second
save registers of current program (CPU registers)
load previously-saved registers of another program
continue
 transparent to the programs!
much more to say about this in the next few lectures

some systems virtualize all h/w
"virtual machine monitors"
 give each subsystem (program?) a complete virtual computer

precisely mimic complete hardware interface
early IBM operating systems shared computer this way

one computer, many VMs

each user can run their own o/s

VMWare, Parallels on Mac, Microsoft Virtual PC
virtualization by itself makes cooperation hard

compiler wants to see editor's output

not so easy if each thinks it has a dedicated virtual disk

Abstraction
 abstraction: virtualize but change interface

 change interfaces to allow sharing, cooperation, portability

Abstraction examples:
really "abstract virtual resources"
disk -> file system
display -> window system
cpu -> only "safe" instrs, e.g. no access to MMU, clock, &c
??? -> pipes

What does an abstraction look like?
 usually presented to programmer as set of "system calls"
see slide (l5.ppt)
you're familiar with FS from UNIX paper
chdir asks the kernel to change dir
rest of code reads a file
 system call looks like procedure, we'll see it's different internally

main() {
int fd, n;
char buf[512];

 chdir("/usr/rtm");

 fd = open("quiz.txt", 0);

n = read(fd, buf, 512);

write(1, buf, n);

close(fd);

}

How to manage / implement abstractions?
how to enforce modularity?
e.g. want prog to use FS *only* via system calls

mechanism: kernel vs user

 [diagram: kernel, programs, disk, &c]

kernel can do anything it likes to h/w

user program can *only* directly use own memory, nothing else

asks kernel to do things via system calls

w/ this arrangement, enforcement more clear, two pieces:

keep programs inside their own address spaces

control transfers between user and kernel

enforcing address space boundaries
use per-program pagemap to prohibit writes outside address space

kernel switches pagemaps as it switches programs

that's how o/s protects one program from another

program's address space split

kernel in high addresses

user in low addresses

 PTEs have two sets of access flags: KR, KW, UR, UW
all pages have KR, KW
only user pages have UR, UW
convenient: lets kernel directly use user memory, to impl sys calls

CPU has a "supervisor mode" flag
if on, Kx PTE flags apply, modify MMU, talk to devices
if off, Ux PTE flags, no devices

 need to ensure supervisor mode = on only when exec kernel code

orderly transfer from user to kernel
1. set supervisor flag
2. switch address spaces
3. jmp into kernel

and prevent user from jumping just anywhere in kernel

and can't trust/user user stack

can't trust anything user provides, e.g. syscall arguments

system call mechanics
App:
chdir("/usr/rtm")

R0 <- 12 (syscall number)

R1 <- addr of "/usr/rtm"

SYSCALL

 SYSCALL instruction:

 save user program state (PC, SP)

set supervisor mode flag

jump to kernel syscall handler (fixed location)

Kernel syscall handler:

save user registers in per-program table

set SP to kernel stack

 call sys_chdir(), an ordinary C function

 ...

 restore user registers

SYSRET

 SYSRET instruction:

 clear supervisor mode flag

restore user PC, SP

continue process execution

this is procedure call with enforced modularity
though only protects kernel from user program
user program can do only two things
use just its own memory
or jump into kernel, but then kernel is in charge

SYSCALL combines setting of supervisor mode and jumping to known location
would be a disaster to let user program specify target

how to use kernel's enforced modularity?
how to arrange module boundaries for system services?
two main camps: microkernel vs monolithic

the microkernel vision
 implement main o/s abstractions as user-space servers

FS, net, windows/graphics

apps, servers interact with messages

kernel provides minimum to support servers

inter-process communication (messages / RPC)

processes -- address space + running program

most interaction via messages

only two main system calls: send() and recv()

why are microkernels attractive?
elegant, simple

 direct support for client/server
kernel is small, fewer bugs
kernel can be optimized to do one thing well (messages)
hard modularity among different servers, vs bugs
uniform port scheme -> uniform security plan
control access by giving (or not giving) port access rights

easier to distribute (messages allows services on other hosts)

where did this idea go?
implementations were slow around 1990 -- e.g. Mach
many messages, esp if you have many servers

tended to end up with a few huge servers, so little modularity win
the message idea was influential, e.g. Apple's OSX

monolithic kernels -- the (so far) winning design
it's too much of a pain to separate lots of servers
easier and more efficient to have one big program

what's in the Linux kernel?

 FDs processes

 FS

disk
 term net cache

 drivers alloc

 enet disk RAM CPU MMU

complex: 300+ sys calls, not just two+ as in microkernel
much of complexity hidden beneath uniform interfaces -- OO style
e.g. all storage devices look the same to the file system
USB flash key, hard disk

all network hardware looks the same to network code
 so not as complex as it looks

why have monolithic kernels mostly won vs microkernels?
tradition, advantages of microkernels are subtle
efficiency: procedure call or mem refs rather than messages
efficiency: better algorithms via integration among modules
balance between file system cache and amt of mem for processes

easy to add microkernel-style messaging, user-level servers
X, sshd, DNS, apache, database, printer

what doesn't work so well in [monolithic?] kernels?
device drivers are buggy, cause crashes
lots of rules e.g. for user pointers passed as arguments
tricky bug-prone programming environment

bad at shared resource management (mem, disk)
compiler uses lots of mem -> laptop unuseable
backup program uses disk -> laptop unuseable (so I don't back up...)
modularity is soft for resource management

Summary

 o/s virtualizes for sharing/multiplexing
abstracts for portability and cooperation
provides enforced modularity in two useful ways:
program / kernel
program / program

supports two kinds of c/s: program -> kernel, program -> program
next: specific techniques for client/server on single computer

