
MIT OpenCourseWare
http://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms.


Department of Electrical Engineering and Computer Science 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.033 Computer Systems Engineering: Spring 2008 

Quiz III - Solutions

2008 Quiz 3 Grades 

50 

40

 30

 20

 10

 0

91-10081-9071-8061-7051-6041-5031-4021-3011-20 

C
o

u
n

t 

Mean: 77 

Median: 79 

StDev: 15 

Score 



I 

6.033 Spring 2008, Quiz 3	 Page 2 of 14 

Warm-up 

1. [6 points]: Which of the following statements about the paper Why Cryptosystems Fail by Ross 
Anderson (reading #17) is true? 

(Circle True or False for each choice.) 

A. True / False The paper claims that most frauds exploit cryptanalysis or other technical attacks. 

FALSE. Most frauds exploit implementation errors and management failures. 

B.	 True / False The paper implies that if UK law were changed such that disputed transactions are the 
bank’s liability unless the bank can prove fraud, the likely result would be a large increase in fraud. 

FALSE. The paper notes that in the US, where banks are liable by default, the resulting fraud is 
insignificant. 

C.	 True / False The paper implies that if you keep your ATM card in your possession at all times, then 
no-one can use the ATM system to steal money from your account. 

FALSE. The paper includes examples of ATM theft that did not require use of the customer’s card. 

2. [6 points]: Which of the following statements are true of Unison (as described in How to Build a 
File Synchronizer, from recitation)? 

(Circle True or False for each choice.) 

A.	 True / False If Unison finds that the content of a file on one host differs from the same file on 
another host, it indicates a conflict. 

FALSE. It only indicates a conflict when the difference is due to separate modifications on both hosts. 

B.	 True / False You create a file X with content "a" on host 1, then create a file X with content "b" 
on host 2. You then delete X from host 1, and run Unison to synchronize hosts 1 and 2. After Unison 
finishes you’ll see a file X with content "b" on host 1. 

TRUE. 

C.	 True / False If you accidentally delete Unison’s archive files on both machines, you are likely to 
need to resolve many more conflicts when you synchronize than if you didn’t delete them. 

TRUE. Unison then won’t be able to distinguish between a file modified on one host versus a file 
modified on both hosts, so it will indicate a conflict for every file that’s not identical on the two hosts. 



6.033 Spring 2008, Quiz 3 Page 3 of 14 

II System Design 

3. [4 points]: Ben Bitdiddle is building a file system, using a B-tree to represent each directory. As 
he works out his design he realizes that some changes to the B-tree need to write several disk pages, 
and he worries about what happens if there’s a crash in the middle of these writes. He starts to work 
out the details, but Pam Principled says he should first read Lampson’s Hints paper (reading #20). 
Which hints directly relate to Ben’s problem? 

(Circle ALL that apply) 

A. Divide and conquer 

B. Dynamic translation 

C. Log updates 

D. Make actions atomic 

Answer: C and D. 

4. [4 points]: Ben finishes his implementation and deploys it. He now starts worrying that B-trees 
have too much overhead for small directories, and decides to deploy a second implementation, using 
linear search, for that case. Which of the following hints directly support Ben’s decision to deploy a 
second implementation? 

(Circle ALL that apply) 

A. Keep secrets 

B. Do one thing well 

C. Separate normal and worst case 

Answer: C (A and B were also accepted.) 



6.033 Spring 2008, Quiz 3 Page 4 of 14 

III Trusting Trust 

5. [6 points]: You’ve written the source code of a compiler C for a new system. You compiler is 
written in the language Blub, and compiles the same language. Since you’re a good MIT student, your 
compiler is completely bug-free. 

Now you need to compile your source. You’re given two executable Blub compilers, a and b, on the 
new system, but warned that one might be buggy or contain a Trojan horse. Except for this potential 
problem in a or b, the three compilers all implement Blub according to its specification, which is 
complete and exact. 

You compile C using both a and b to produce executables ca and cb respectively. You then compile 
C using ca to produce cca, and compile C using cb to produce ccb. Finally, you compile C using 
cca to produce ccca, and compile C using ccb to produce cccb. You now compare the binaries 
produced at various stages of the compilation. Which of the following statements is true? 

(Circle True or False for each choice.) 

A. True / False If ca and cb differ then one of a and b is necessarily buggy/Trojaned. 

FALSE. Even if a and b are bug-free, they will likely compile the same input code to different output 
machine instructions. 

B. True / False If cca and ccb differ then one of a and b is necessarily buggy/Trojaned. 

TRUE. C should always produce the same output for a given input. That is, any two correct compila­
tions of C’s source should behave the same. 

C. True / False If ccca and cccb differ then one of a and b is necessarily buggy/Trojaned. 

TRUE 

D. True / False If cca and ccca differ then a is necessarily buggy/Trojaned 

TRUE 

E. True / False If b contains a Trojan horse, then ccb and cccb will necessarily differ. 

FALSE. Perhaps the operation of the Trojan horse is not triggered in this particular case. 



6.033 Spring 2008, Quiz 3 Page 5 of 14 

IV Worms 

Ben Bitdiddle, the new head of Cyber-Security for the Department of Homeland Security, wants to build a 
system that will detect and stop a Witty (reading #18) attack before it can reach 50% of the vulnerable hosts. 

We make the following assumptions about Witty: 

• Each Witty instance sends 512 (29) packets per second 

• Witty’s software has been fixed to probe all IP addresses rather than only a subset 

• There are 32768 (215) vulnerable hosts on the Internet 

• The initial hitlist contains a single vulnerable host 

6. [6 points]: Given the assumptions above, roughly how many seconds will it take for the size of 
the infected population to double, during the early stages of a Witty outbreak? 

(Circle the BEST answer) 

A. 16 seconds 

B. 256 seconds 

C. 1024 seconds 

Answer: B 256. There are 232 possible IP addresses, and 215 vulnerable hosts, hence roughly one in 217 

probes will be directed at a vulnerable host. It takes each Witty 28 seconds to generate 217 probes at 
2
9/second. That is, a given small population of Wittys will double roughly every 256 (28) seconds. 



6.033 Spring 2008, Quiz 3 Page 6 of 14 

Ben convinces a consortium of router vendors to develop a new, remotely-configurable packet-filtering fea­
ture, and develops a system that can propagate filter updates to all routers in the Internet within 15 minutes 
(900 seconds) of a detected outbreak. Once all routers have the filter, the filters will prevent all further Witty 
infections. 

Ben’s detection mechanism is connected to a class-A network telescope (meaning that it sees 1/256th of the 
Internet address space). His system is automatically triggered, propagating a packet filter update, whenever 
Witty traffic on the network telescope reaches a predefined threshold. 

7. [8 points]: From the traffic thresholds shown below, which is the largest that would be expected to 
result in stopping Witty before it reaches 50% of the vulnerable hosts? (You may use your approximate 
answer from the previous question to compute this.) 

(Circle the BEST answer) 

A. 10 packets/second 

B. 100 packets/second 

C. 1000 packets/second 

D. 10000 packets/second 

E. 100000 packets/second 

Answer: 1000. The threshold must be crossed 15 minutes before the outbreak reaches 50% of vulnerable 
hosts. 15 minutes is roughly 4 doublings, so the threshold should be set for the traffic level generated by 
infection of 3% of the vulnerable hosts. That’s about 1000 hosts, which would generate 512,000 pack­
ets/second, of which Ben’s telescope would see 1/256th, or 2000/second. So the threshold must be set to a 
value smaller than 2000. 



6.033 Spring 2008, Quiz 3	 Page 7 of 14 

V Beyond Stack Smashing 

You are hired by a well-known OS vendor to help them defend their products against buffer overrun attacks. 
Their team presents several proposed strategies to foil buffer exploits: 

•	 Random stack: Place the stack in an area of memory randomly chosen for each new process, rather 
than at the same address for every process. 

•	 Non-executable stack: Set the permissions on the virtual memory containing the stack to RW (read 
and write but not execute). Set the permissions on the memory containing the program instructions to 
RX (read and execute but not write). 

•	 Bounds checking: Use a language such as Java or Scheme that checks that all array/buffer indices 
are valid. 

You are aware of several buffer overrun attacks from your reading of Beyond Stack Smashing by Pincus and 
Baker (reading #16). They are summarized as follows: 

•	 Simple buffer overrun: The victim program has an array on the stack as in Figure 1(a) of the pa­
per. The attacker overruns the array with data that includes both some new instructions and a return 
program counter (PC) that points to these instructions. 

•	 Trampoline: The victim program has an array on the stack as in Figure 1(a) of the paper, but the 
attacker cannot predict its address. However, the attacker knows that subroutine f1a() leaves a 
pointer into the array in register R5 when it returns, and that the instructions at address x jump to 
wherever R5 points to. The attacker overruns the array, overwriting the return PC with a pointer to 
address x. 

•	 Arc injection (return-to-libc): Similar to the above, except that the attacker overwrites the return PC 
to point to an exec call in the libc library, indicated by target in the figure on page 22 of the paper. 



6.033 Spring 2008, Quiz 3 Page 8 of 14 

In the following questions, an attack is considered prevented if the attacker can no longer execute the in­
tended malicious code, even if an overflow can still overwrite data or crash or disrupt the program. 

8. [6 points]: Which of the following attack methods are prevented by the use of the random stack 
technique? 

(Circle ALL that apply) 

A. Simple buffer overrun 

Yes. The simple buffer overrun requires the malicious instructions in the buffer to be at a predictable 
address; the buffer also contains that address at a place which will overwrite the return PC on the 
stack. 

B. Trampoline 

No. Trampoline lets the attack work regardless of stack location, since it uses a register that points 
into the stack. 

C. Arc injection (return-to-libc) 

No. Arc injection doesn’t involve executing instructions in the buffer overwritten by the attacker, so 
the fact that the buffer’s address isn’t predictable doesn’t matter. 

9. [6 points]: Which of the following attack methods are prevented by the use of the non-executable 
stack technique? 

(Circle ALL that apply) 

A. Simple buffer overrun 

Yes, since the attack tries to execute instructions in a buffer on the stack. 

B. Trampoline 

Yes, since the attack tries to execute instructions in a buffer on the stack. 

C. Arc injection (return-to-libc) 

No, since the attack executes only instructions that are already present in the victim program. 

10. [6 points]: Which of the following attack methods are prevented by the use of the bounds 
checking technique? 

(Circle ALL that apply) 

A. Simple buffer overrun 

B. Trampoline 

C. Arc injection (return-to-libc) 

Yes for all three, since they all involve writing beyond the end of an array on the stack in order to change 
the return PC. 



6.033 Spring 2008, Quiz 3 Page 9 of 14 

VI Two-Phase Commit 

Here’s a summary of the two-phase commit protocol example outlined in Chapter 9-F-3 of the book, where 
Alice is the coordinator for Bob and Charles: 

1 Alice → Bob: please do X


2 Alice → Charles: please do Y


3 Bob → Alice: done with X


4 Charles → Alice: done with Y


5 Alice → Bob: PREPARE to commit or abort


6 Alice → Charles: PREPARE to commit or abort


7 Bob → Alice: PREPARED


8 Charles → Alice: PREPARED


9 Alice → Bob: COMMIT


10 Alice → Charles: COMMIT 

11. [8 points]: At which points is it OK for Bob to abort his part of the transaction, i.e., undo any 
changes he has made to his data in response to Alice’s requests, release any locks he holds, and forget 
all information he stores about those requests? 

(Circle ALL that apply) 

A. After receiving message 1 but before sending message 3. 

B. After sending message 3 but before receiving message 5. 

C. After receiving message 5 but before sending message 7. 

D. After sending message 7 but before receiving message 9. 

E. After receiving message 9. 

Answer: it’s OK for Bob to abort any time before sending PREPARED (message 7). If Alice has 
not received Bob’s PREPARED, she will not tell Charles to commit. If Alice has received Bob’s 
PREPARED, she may tell Charles to COMMIT. Since the goal is to ensure that either both or neither 
of Bob and Charles commits, Bob must be willing to commit once he sends PREPARED; he cannot 
unilaterally abort. 



6.033 Spring 2008, Quiz 3	 Page 10 of 14 

VII One-time Pad 

Alice wants to communicate with Bob over an insecure network. She learned about one-time pads in 6.033, 
and decides to use a one-time pad to secure her communications. Since Alice wants to send a k-bit message 
to Bob in the future, she generates a random k-bit key r and hands it to Bob in person. 

When Alice comes to send Bob her message, she XORs the message mwith the key r to produce a cyphertext 
c, and sends this on the network. Bob XORs c with r to retrieve m. 

12. [6 points]: Assume that Alice’s message m is a concatenation of a header followed by some 
data. Consider an eavesdropper Eve who snoops on Alice’s conversation. If Eve can correctly guess 
the value of the header in Alice’s message, which of the following are correct? 

(Circle ALL that apply) 

A.	 Eve’s ability to decrypt the data bits in m is not improved by her knowledge of the header bits. 

Yes. The one-time pad encrypts each bit independently, hence there is no correlation between the 
encryption of the data bits and the header bits. 

B.	 The data bits in Alice’s message are confidential. 

Yes. Since each bit in m is XORed with the corresponding bit in the random key, it is impossible to 
determine the correct decryption without knowledge of the key (or m). 

C.	 The data bits in Alice’s message are securely authenticated. 

No. An active attacker could change bits in c and the one-time scheme would not alert Bob that he 
was not reading the information Alice sent. 

Alice rapidly grows tired of the effort in exchanging one-time pads with Bob, and has an idea to simplify 
the key distribution process. Alice’s idea works as follows: 

To send a k-bit message m1 to Bob, Alice picks a k-bit random number r1, computes cyphertext c1 = m1 XOR r1, 
and sends c1 to Bob. Bob then picks his own k-bit random number r2, computes c2 = c1 XOR r2, and 
sends c2 to Alice. Alice finally computes c3 = c2 XOR r1 and sends c3 to Bob. 

13.	 [6 points]: Which of the following are correct of Alice’s scheme?

(Circle ALL that apply)


A.	 Bob can correctly decrypt Alice’s message m1, without receiving r1 ahead of time, assuming all

messages between Alice and Bob are correctly delivered.


Yes, since c3 = r2 XOR m1 and Bob knows r2. 

B.	 An active attacker Lucifer (who can intercept, drop, and replay messages) can decrypt the message. 

Yes. Lucifer can use the same technique as Eve (see next answer). 

C.	 A passive eavesdropper Eve can decrypt the message. 

Yes. Eve can find out r2 using c2 XOR c1, and then find m1 using c3 XOR r2. 



6.033 Spring 2008, Quiz 3 Page 11 of 14 

VIII Locking for Transactions 

Assume a database with logs as described in Chapter 9-C and locks as described in Chapter 9-E. The log­
ging and recovery works as shown in Figure 9-21 (the in-memory database with write-ahead logging). Pro­
grammers write transaction functions, and the database automatically adds acquire and release calls to the 
transaction functions in a way that achieves serializability, avoids deadlocks caused by locking, and allows 
the transactions to have all-or-nothing atomicity in the face of crashes. 

As a reminder, concurrently executing transactions are serializable if the result is the same as if they had 
executed one at a time in some order. A transaction has all-or-nothing atomicity if, after a failure and 
recovery, the transaction appears either to have completely executed or to have never started. 

Consider the following transaction. The database system automatically inserted the acquire() and 
release() calls. 

t1():

BeginTransaction

acquire(X.lock)

acquire(Y.lock)

X = X + 1

if(X == 1):

Y = Y + 1


CommitTransaction

release(X.lock)

release(Y.lock)


X and Y denote particular database entries (they are not parameters to the transaction). 

The above transaction works correctly even if multiple instances of the transaction execute concurrently. 
That is, it is serializable, won’t deadlock, and has all-or-nothing atomicity if there is a crash and recovery. 

14. [6 points]: The database starts with contents X=0 and Y=0. Two instances of t1() are started 
at about the same time. There are no crashes, and no other activity. After both transactions have 
completely finished, which of the following are possible database contents? 

(Circle ALL that apply) 

A. X=1 Y=1 

B. X=2 Y=0 

C. X=2 Y=1 

D. X=2 Y=2 

Answer: C. The locks cause the two transactions to execute one at a time. Since they are identical, 
the result is the same regardless of order. 



6.033 Spring 2008, Quiz 3	 Page 12 of 14 

Suppose the code for t1()was changed such that the two releases are just before the CommitTransaction: 

t1b():

BeginTransaction

acquire(X.lock)

acquire(Y.lock)

X = X + 1

if(x == 1):

Y = Y + 1


release(X.lock)

release(Y.lock)

CommitTransaction


This version is not correct. 

15. [8 points]: The database starts with contents X=0 and Y=0. Two instances of t1b() are started 
at about the same time. There is a crash, a restart, and recovery runs. After recovery completes, which 
of the following are possible database contents? 

(Circle ALL that apply) 

A.	 X=1 Y=1 

Yes. The crash may occur after one transaction commits, but before the other one starts. 

B.	 X=2 Y=0 

Yes. One transaction might get as far as releasing locks, but not as far as committing. Then the 
second transaction runs and commits, writing only a new X=2 to the log. Then the system crashes, 
loses its state, and recovery re-does only the second transaction’s write to X (and not Y), since the 
first transaction did not commit. 

C.	 X=2 Y=1 

Yes, if the crash occurs after both transactions commit. 

D.	 X=2 Y=2


No. No execution can produce Y=2.




6.033 Spring 2008, Quiz 3 Page 13 of 14 

Here are three transactions. The locking in t2() is not correct. 

t2():

BeginTransaction

acquire(M.lock)

temp = M

release(M.lock)

acquire(N.lock)

N = N + temp

CommitTransaction

release(N.lock)


t3():

BeginTransaction

acquire(M.lock)

M = 1

CommitTransaction

release(M.lock)


t4():

BeginTransaction

acquire(M.lock)

acquire(N.lock)

M = 1

N = 1

CommitTransaction

release(M.lock)

release(N.lock)


16. [8 points]: The initial values of M and N in the database are M=2 N=3. Two of the above 
transactions are executed at about the same time. There are no crashes, and there is no other activity. 
For each of the following pairs of transactions, decide whether concurrent execution of that pair could 
result in a non-serializable result. If not, write none. If a non-serializable result could occur, write 
an example of such a result (an M and an N). 

(Please write your answers in the spaces below) 

t2() and t2(): None. Since M doesn’t change, we can ignore the first half of t2(). The second

halves are forced to run one at a time by the lock on N, which means the result must be serializable by

definition.


t2() and t3(): None. The only potential problem case is if t3() runs after t2()’s release of the

M lock, but in that case the result is the same as if t3() ran entirely after t2().


t2() and t4(): M=1 N=3, if t4() runs after t2()’s release of M and before its acquire of N.

This result not serializable because it is equal to neither the result of running t2() then t4(), nor

running t4() then t2().




6.033 Spring 2008, Quiz 3 Page 14 of 14


End of Quiz III.

Have a great summer!



