
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu.terms

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2007

Quiz I11 Solutions

There are 19 questions and 23 pages in this quiz booklet. Answer each question according to the
instructions given. You have 90 minutes to answer the questions.

Most questions are multiple-choice questions. Next to each choice, circle the word True or False,
as appropriate. A correct choice will earn positive points, a wrong choice may earn negative
points, and not picking a choice will score 0. The exact number of positive and negative points
for each choice in a question depends on the question and choice. The maximum score for each
question is given near each question; the minimum for each question is 0. Some questions are
harder than others and some questions earn more points than others-you may want to skim all
questions before starting.

If you find a question ambiguous, be sure to write down any assumptions you make. Be neat and
legible. If we can't understand your answer, we can't give you credit!

Write your name in the space below AND at the bottom of each page of this booklet.

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

NO PHONES, NO COMPUTERS, NO LAPTOPS, NO PDAS, ETC.

CIRCLE your recitation section number:

Do not write in the boxes below

I 1-5 (xd21) I 6-10 (xd34) 1 11-15 (xd25) 1 16-19 (xd20) I Total (xxI100) I

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 2 of 23

Quiz 3 Statistics

2007 Quiz 3 Histogram

Mean: 80

Median: 81

Mode: 86

StDev: 10

Min: 44

Max: 98

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 3 of 23

I1 Short Reading Questions

11.1 Buffer overruns

1. [4 points]:For each of the following approaches, indicate whether it will completely eliminate
buffer-overrun vulnerabilities in a user's program:

(Circle True or False for each choice.)

(a) True / False Have the operating system mark stack memory pages as non-executable.

False. For example, a bufer overrun can still use techniques like arc injection to attack the
system.

(b) True / False Have the operating system mark heap memory pages as non-executable.
False. For example, a bufer overrun can still use techniques like stack smashing to attack the
system.

(c) 	True / False Save an extra copy of a hnction call's return address (e.g., on a separate call and
return stack) and make sure the two copies match before jumping.

False. For example, a bufer overrun can still use function pointers to execute arbitrary code

(d) 	True / False Re-write all programs (including libraries) in Java (or another type safe language
with array bounds checking).
True. Bounds-checking prevents bufer overruns in the user's program. There may still be vul-
nerabilities, but t h q aren't due to unintentional overwriting of data via overruning a bufer:

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 4 of 23

11.2 Subversion

Alice and Bob are collaborating on the Java code that implements their DP2 design. Using SVN (Subver-
sion), they maintain the following set of files that compile into a working implementation of DP2.

Makef i l e

t r e e . java

server. j ava

peer. j ava

t racker . java

2. 	 [4 points]: Which of the following statements are true?
(Circle True or False for each choice.)

(a) 	True / False If Alice and Bob concurrently edit different methods which are on different lines
of t r ee .j ava on their respective up-to-date repositories (i.e., they ran SVN up before either
of them started editing), then neither Alice nor Bob will be able to commit directly, without
encountering an error message.

False. Thefirst one to commit will see no problems. The second one will receive afile-out-of-date
error when they attempt to commit.

(b) 	True / False If Alice and Bob concurrently edit different methods of t r ee .j ava on their
respective up-to-date repositories (i.e., they ran SVN up before either of them started editing),
neither Alice or Bob will need to manually resolve a conflict.

True. SVN's merge function takes care of resolving situations where people edited dzferent
sections of thefile.

(c) 	True / False If Alice and Bob concurrently attempt to edit t r ee .j ava on their respective up-
to-date repositories, SVN will prevent Alice and Bob from concurrently editing t r ee .j ava.

False. SVN uses an optimistic concurrency control scheme, not a pessimistic one.

(d) 	True / False Alice edits peer .j ava and Bob edits server .j ava. Both Alice and Bob
verify that the project builds correctly after their edits, and they commit without error. When
their sleeping teammate Charles wakes up from a nap and updates, his repository is certain to
build without error.

False. Suppose serve~java defines a constant that originally only the server code uses. Alice
changes the peer code to reference the constant. Bob deletes the constant. Charlie build will
generate an error.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 5 of 23

11.3 Worms

Ben decides to start an ISP. He buys a I8 address space (i.e., 224 addresses) that has never been used before.
A few days after he buys this address space, a worm is launched. The worm targets a buffer overflow in the
FOO server, which listens on UDP port 5044. Ben monitors all traffic sent to his address space on that port
and plots the number of packets versus time in Figure 1 below.

100

packetslsec

time
0

Figure 1: Packets per second from the point that the worm starts.

Assume the worm spreads by probing random IP addresses, and that its pseudo-random number generator
is bug-free and generates a complete permutation of the integers before revisiting any integer. Ben learns
from a security analyst that each infected machine sent 100 packetslsecond.

3. 	 [4 points]: Give an estimate of the total number of machines that run the FOO server?
(Circle the BEST answer)

(a) 100 machines

(b) 7.2 x 1018 machines

(c) 25,600 machines
Answer: 10,000 packets / sec divided by 100 packets / sec /machine is 100. The telescope only
sees 1/256 of the actual trafic, thus the total is 256 times 100 or 25,600.

(d) 8,000 machines

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 6 of 23

4. [5 points]:Ben thinks that the worm used a hit list of vulnerable addresses (i.e., addresses of FOO
servers). Do you agree? If you do, what is the best estimate for the number machines contained in the
hit list?

(Circle the BEST answer)

(a) no hit list

(b) 100 machines

(c) 256 machines

Answer: The fact that the graph starts with a jump indicates that at the beginning the worm used
a hit list. I f the network telescope sees 1 00packets/second while observing 1/256 of the address
space, there must be 256 infected machines at the beginning.

(d) 25600 machines

(e) 80 machines

11.4 Privacy

5. [4 points]:The 4th Amendment of the Constitution, as interpreted in the Olmstead vs. U.S. ruling
in 1928, established that the boundary of a person's property defines the area in which he or she can
expect privacy protection ("a man's house is his castle"). According to Daniel Weitzner's lecture,
which of the following technologies have led to changes in the definition and boundaries of privacy
protection in the United States legislative and legal systems?

(Circle True or False for each choice.)

(a) True / False telephone booth

True. Katz v. United States. 389 US. 347 (1 967)

(b) True / False email

True. ECPA: email gets status of 1st class mail vs. 3rdparty business records

(c) True / False community websites like www.facebook.com
False. Not yet, at least.

(d) True / False public waste management systems

True or False. Your trash was clarified as non-private in a court case. Depending on whether
this is considered a change or not, the answer is either true or false.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 7 of 23

I11 The Bitdiddler

Ben Bitdiddle is designing a file system for a new handheld computer, the Bitdiddler, which is designed to
be especially simple, for, as he likes to say, "people who are just average, like me."

In keeping with his theme of simplicity and ease of use for average people, Ben decides to design a file
system without directories. The disk is physically partitioned into three regions: an inode list, a free list, and
a collection of 4K data blocks, as in the Unix file system. Unlike in the Unix file system, each inode contains
the name of the file it corresponds to, as well as a bit indicating whether or not the inode is in use. Like
Unix, it also contains a list of blocks that compose the file, and metadata about the file, including permission
bits, its length in bytes, and modification and creation timestamps. The free list is a bitmap, with one bit per
data block indicating whether that block is free or in use. There are no indirect blocks in Ben's file system.
The basic layout of the Bitdiddler file system is shown in Figure 2.

inodes

free list data
blocks

Figure 2: The Bitdiddler's file system layout. The free list indicates which data blocks are not in use, and the inode
list indicates the data blocks that compose each file.

111.1 Bitdiddler with synchronous writes

The file system includes six primary API calls (c r e a t e , open, r e a d , w r i t e , c l o s e , u n l i n k) , which
Ben implements correctly and in a straightforward way. They are shown on the next page. All updates to
the disk in this pseudocode are synchronous - that is, after a call to write a block of data to disk returns, that
block is definitely installed on the disk. Individual block writes are atomic.

Name:

1

6.033 Spring 2007, Quiz 3 Solutions Page 8 of 23

procedure CREATE(f ilename)
scan all non-free inodes to ensure this is not a duplicate file (return ERROR if duplicate);
find a free inode in the inode list;
update the inode with 0 data blocks, mark it as in use, write it to disk;

procedure O P E N (f ilename)
// veturns file handle

scan non-free inodes to ensure the file exists;

if so, allocate and return a file handle that references the inode;

procedure W R I T E (f h,buf , len)
look up the file handle to determine inode of the file, read it;
if there is free space in last block of file, write to it
determine number of new blocks needed, n;
for i +- 1to n do

use free list to find a free block b;

update free list, write free list to disk;

add b to inode, write inode to disk;

write appropriate data to block b and write b to disk;

procedure READ (f h,buf , 1 en)
lookup the file handle to determine inode of the file, read it;
read len bytes of data from the current location in file into buf;

procedure C L O S E (f h)
remove fh from the file handle table;

procedure U N L I N K (f ilename)
scan the disk to find the inode for the file, mark its inode as free;
write inode to disk;
mark data blocks used by file as free in free list;
write modified free list blocks to disk;

Figure 3: File system calls and their implementation in the Bitdiddler. The implementation of these calls is straight-
forward.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 9 of 23

Ben writes the following simple application for the Bitdiddler:

create (filename) ;
fh = open(fi1ename);
write(fh, appData, length(appData)); //app~ata contains some data to be written

close (f h) ;

6. [8 points]: Ben notices that if he pulls the batteries out of the Bitdiddler while running his appli-
cation and then replaces the batteries and reboots the machine, the file his application created exists
but contains unexpected data that he didn't write into the file. Which of the following are possible
explanations for this behavior? (Assume that the disk controller never partially writes blocks.)

(Circle ALL that apply)

(a) 	Yes I No The free list entry for a data page allocated by the call to write() was written to disk,
but neither the inode nor the data page itself were written.

No. Without writing the inode, the allocated blocks aren 't part of thejile. This results in a leak
of blocks o f t h e free list but not garbage data in files.

(b) 	Yes I No The inode allocated to Ben's application previously contained a (since deleted) file
with the same name. If the system crashed during the call to create(), it may cause the old file to
reappear with its previous contents.
No. Without partial block writes, this can't happen because the inode is marked with 0 data
blocks before being written to disk.

(c) 	Yes / No The free list entry for a data page allocated by the call to write() as well as a new
copy of the inode were written to disk, but the data page itself was not.

Yes. The inode is written out before the contents of the data block. Thus a crash between when
the inode is written and when the data block is written will result in the file containing a block
with data from a deletedfile.

(d) 	Yes I No The free list entry for a data page allocated by the call to write() as well as the data
page itself were written to disk, but the new inode was not.

No. The ordering is explicit: allocate o f t h e free list, update inode, then write data. Without
asynchronous write-back, this situation cannot occur:

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 10 of 23

7. [8 points]:Ben decides to fix inconsistencies in the Bitdiddler's file system by scanning its data
structures on disk every time the Bitdiddler starts up. Which of the following inconsistencies can be
identified using this approach (without modifling the Bitdiddler implementation)?

(Circle True or False for each choice.)

(a) True / False In use blocks on the free list.

True. By following pointers from allocated inodes, all in use blocks can the discovered and
checked against the free list.

(b) True / False Unused blocks not on the free list.

True. After discovering in-use blocks as above, all remaining blocks are unused and thus should
be on the free list.

(c) True / False In-use blocks containing data from previously unlinked files.
False. This is the case examined in the previous problem (6.c). There is no way to determine if
the data in a j l e is correct.

(d) True / False Blocks used in multiple files.

True. I fa block is reachable from multiple inodes, it's used in multiplejles.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 11 of 23

111.2 Logging Bitdiddler

Alyssa points out Ben's Bitdiddler with synchronous block writes doesn't guarantee that file system calls
(e.g., write, close, etc.) provide all-or-nothing atomicity (e.g., they happen completely or don't happen at
all). Instead, she suggests that Ben use a logging approach to help provide all-or-nothing atomicity for each
file system call.

She proposes that the file system synchronously write a log record before every create, write, or unlink call.
Each log record contains the type of operation performed, the name of the file, the old and new value of
the data being written (for write), and the offset where the new data will be written (for write). The system
ensures that log record writes are atomic.

Ben modifies the Bitdiddler code to perform these logging operations to a separate log file on a separate
disk before doing the create, write, or unlink operations themselves. He then implements a crash recovery
protocol that scans the log after a crash and uses it to ensure all-or-nothing atomicity.

8. 	 [5 points1:Which of the following crash recovery protocols ensures that file system calls are
all-or-nothing (assuming there was at most one file system call running when the system crashed)?

(Circle True or False for each choice.)

(a) True 	/ False Scan the log from the beginning to the end; re-apply each logged operation to the
specified file in forward-scan order.
True. Replaying the log in forward order will result in every file having its most recent contents.
Since the log is keyed on filename, a create that returns a diferent inode than when it was
originally executed will not cause a problem file descriptors are volatile and thus do notpersist
through a crash). With this method, the disk could even be wiped clean before recovery and the
recovery operation would work correctly.

(b) True 	/ False Scan the log from the end to the beginning; re-apply each logged operation to the
specified file in reverse-scan order.
False. Replaying the log in reverse order will result in allfiles having no contents (the earliest
log record relating to each file is a create record, which when replayed sets the number of data
blocks in the file to 0.

(c) True / False Read the last log record and re-apply it.
True. Since file system operations are synchronous and only one operation is in progress at a
time, there can be only one operation interrupted by a crash. Thus, reapplying the most recent
log record is suflcient.

(d) True 	/ False Scan the log from the beginning to end and identify all the files that should have
been created but don't exist (e.g., don't have an inode and were not deleted). Then, scan the log
from beginning to end, re-doing creates and writes for those files in forward-scan order.
False. This process only recovers newly created files, ignoring any changes to pre-existing files.

(e) True 	/ False Scan the log from the beginning to end and identify all the files that should have
been created but don't exist (e.g., don't have an inode and were not deleted). Then, scan the log
from the end to the beginning, re-doing creates and writes for those files in reverse-scan order.
False. As in part d, this doesn't recover old files with recent writes, and moreover it doesn't
recover newfiles (they all end up empty).

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 12 of 23

111.3 High-Performance Logging Bitdiddler

Ben observes that synchronous writes slow down the performance of his file system. To improve perfor-
mance with this logging approach, Ben modifies the Bitdiddler to include a large file system cache. w r i t e ,
c r e a t e , or un l ink update blocks in the cache. To maximize performance, the file system propagates
these modified blocks to disk asynchronously, in an arbitrary order, and at a time of its own choosing.
Ben's file system still writes log records synchronously to ensure that these are on disk before executing the
corresponding file system operation.

9. [5 points1:Which of the following crash recovery protocols ensures that file system calls are
all-or-nothing in this high performance version of the Bitdiddler (assuming there was at most one file
system call running when the system crashed)?

(Circle True or False for each choice.)

(a) True 	/ False Scan the log from the beginning to the end; re-apply each logged operation to the
specified file in forward-scan order.

True. Replaying the log in forward order will result in everyjle having its most recent contents.
Since the log is keyed on jlename, a create that returns a diferent inode than when it was
originally executed will not cause a problem @le descriptors are volatile and thus do not persist
through a crash). A full replay takes care of any asynchrony issues.

(b) True 	/ False Scan the log from the end to the beginning; re-apply each logged operation to the
specified file in reverse-scan order.

False. Replaying the log in reverse order results in disaster:

(c) True / False Read the last log record and re-execute it.
False. With asynchronous disk block writeback, the results of many previous updates may not
have been written to disk when the system crashes. Thus, a full log replay is necessary.

(d) True 	/ False Scan the log from the beginning to end and identify all the files that should have
been created but don't exist (e.g., don't have an inode and were not deleted). Then, scan the log
from beginning to end, re-doing creates and writes for those files in forward-scan order.

False. Didn't work under the simple case, still doesn't work now.

(e) True 	/ False Scan the log from the beginning to end and identify all the files that should have
been created but don't exist (e.g., don't have an inode and were not deleted). Then, scan the log
from the end to the beginning, re-doing creates and writes for those files in reverse-scan order.
False. Ditto.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 13 of 23

10. [8 points]: Alyssa suggests that Ben might want to modify his system to periodically write
checkpoints to make recovery efficient. Which of the following checkpoint protocols will allow Ben's
recovery code to start recovering from the latest checkpoint while still ensuring all-or-nothing atom-
icity of each file system call in the high performance, asynchronous Bitdiddler?

(Circle ALL that apply)

(a) 	Yes I No Complete any currently running file system operation (e.g., open, write, unlink, etc.),
stop processing new file system operations, write all modified blocks in the file system cache to
disk, and then write a checkpoint record to the log containing a list of open files.

Yes. F'hen there are no operations in progress and thejile system disk cache contains no modiJied
blocks, the state of the disk matches the state of the log. It is safe to write a checkpoint log at this
point. There is no need to include openjiles in the checkpoint (openjiles do not persist across a
crash), but it doesn 't hurt.

(b) 	Yes I No Complete any currently running file system operation, stop processing new file system
operations, write all modified blocks in the file system cache to disk, and then write a checkpoint
record to the log containing no additional information.

Yes. F'hen there are no operations in progress and thejile system disk cache contains no modiJied
blocks, the state of the disk matches the state of the log. It is safe to write a checkpoint log at
this point.

(c) 	Yes 1 No Write all modified blocks in the file system cache to disk without first completing
current file system operations, and then write a checkpoint record to the log containing a list of
open files.
No. Since there are operations in progress, the state of the disk and the state of the log may be
out of sync. Noting the list of openjiles will indicate whichjiles might have issues, but there may
be log records before the checkpoint log record that must be replayed to ensure all-or-nothing
semantics.

(d) 	Yes I No Write a checkpoint record to the log (containing a list of open files), but do not write
all modified blocks to disk.

No. With modiJied blocks in the cache, the state of the disk and the state of the log are out of
sync, potentially by an arbitrary amount. Any log record before the checkpoint could possibly
need to be replayed to ensure all-or-nothing semantics.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 14 of 23

111.4 Transactional Bitdiddler

By now, Ben is really excited about his file system and decides to add some advanced features. From taking

6.033, he knows that transactions are a way to make multiple operations appear as though they are one

isolated, all-or-nothing atomic action, and he decides he would like to make his file system transactional, so

that programs can commit changes to several files as a part of one transaction, and so that concurrent users

of the file system are isolated from seeing the effects of others' partially complete transactions. He adds

three new function calls:

t i d = b e g i n T r a n s a c t i o n 0 ;

commit (t i d);

a b o r t (t i d);

Ben modifies the o p e n () call to take a t i d parameter that specifies the transaction that this file access

will be a part of. In this model, one transaction can access multiple files, and those changes are only visible

to other transactions after commit has been called. If the system crashes before a transaction commits, its

actions are undone during recovery.

Ben decides to implement transactions using locking. He places a single exclusive lock on each file, and

modifies open so that it attempts to acquire that lock before returning. If another transaction currently has

the lock, it blocks until the lock is free.

The implementation of Ben's new o p e n call is as follows:

FileHandle open(int tid, String file) {
int 1ockingTid;

do {
1ockingTid = testAndA~quireLockOnFile(fi1e~tid);

) while (1ockingTid != tid);

return doopen (f ile) ;

I

testAndAcquireLockOnFile() tests to see if file is locked by a transaction, and if it is, returns the
id of the locking transaction. If it is not locked, it acquires the lock on behalf o f t i d , and returns t i d .

Ben modifies his logging code so that each log record includes the t i d of the transaction it belongs to and
adds COMMITand ABORT records to indicate the outcome of transactions.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 15 of 23

Ben is writing the code for the close and commit functions, and is trying to figure out when he should release
the locks acquired by his transaction. His code is as follows:

close (FileHandle fh) {
remove fh from file handle list

A:

1
commit (int tid) {

FileHandle files [I = getFilesLockedByTid (tid) ;
for (f in files) {

if (isopen (f)) close (f) ;

1
B :

log a COMMIT record for tid ; //commit point
C :

1
Note that commit closes files before committing them, and that files may be closed before commit is called.

11. [5 points]: When can Ben's code release a lock on a file (or all files) while still ensuring that the
locking protocol implements a serial-equivalent transaction schedule?

(Circle ALL that apply)

(a) Yes I No At the line labeled A:

No. Files may be closed before commit is called. Imagine T1 reads file A, closes and re-opens it,
then writes to it. In the middle, a transaction T2 could writefile A, resulting in a non-serializable
schedule.

(b) Yes I No At the line labeled B:

No. Suppose transaction TI got to point B, released its loch, then stalled for a while. In
the meantime, another transaction T2 reads values that TI produced and successfully commits.
Then the system crashes. T1 will be aborted because it did not manage to write a commit record.
However, T2's results did get written and they depended on results from an aborted transaction.

(c) Yes I No At the line labeled C:

Yes. Loch can only be released after the commitpoint.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 16 of 23

Ben begins running his new transactional file system on the Bitdiddler. The Bitdiddler allows multiple
programs to run concurrently, and Ben is concerned that he may have a bug in his implementation because
he finds that sometimes some of his applications block forever waiting for a lock. Alyssa points out that he
may have deadlocks.

Ben hires you to help him figure out whether there is a bug in his code or if applications are just deadlocking.
He shows you several traces of file system calls from several programs; your job is to figure out out whether
the operations indicate a deadlock, and if not, what one equivalent serial order of the transactions in the
system could be (there may be several possible equivalent orders -you only need to show one.)

After each trace, assume that there are no more read or open calls but that transactions will commit if
they have not deadlocked.

Alyssa helps out by analyzing and commenting on the first trace for you (you should read these traces as
though time goes down the page - so the first one shows that the first action is begin (TI) ,followed by
begin (T2)):

Example Trace

Program 1: Program 2:
begin (TI)

begin (T2)
fh=open (Tl, 'f oo')

fh2=open(T2,'foo1) //blocks waiting for T1
write (fh, 'hi')
close (fh)
commit (TI)

write (fh2, 'hello')

//program 2 can now commit without deadlocking

Give an equivalent serial order, or write DEADLOCK: TI, T2

Trace 1

Program 1: Program 2: Program 3 :

begin (TI)
begin (T2)

begin (T3)

fh3=open(T3,'bazr)

write (fh, 'hi')

fh4=open(T2,'baz1)
fh5=open(T3, '£00')

close (fh)
commit (T1)

12. [4 points]: Give an equivalent serial order, or write DEADLOCK: T 1 ,T3,T2

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 17 of 23

Trace 2

Program 1: Program 2: Program 3: Program 4:
begin (TI)

begin (T2)
fh=open (Tl, 'f oo')
write (fh, 'boo')

fh2=open (T2, 'bar')
write (fh2, 'car')

close (fh)
commit (TI)

begin (T3)
begin (T4)
fh3=open(T4, '£00')

fh4=open(T3, 'bar')
fh5=open (T2, 'f oo')

fh6=open(T4,'bar1)

13. [4 points]: Give an equivalent serial order, or write DEADL0CK:DEADLOCK

T2 and T4form a cycle in the happens-before graph. T2 depends on foo's value from T4 and T4
depends on bar's value from T2.

Trace 3

Program 1: Program 2 : Program 3 : Program 4:
begin (TI)

begin (T2)
fh=open(Tl, 'foo')
write (fh, 'boo')

fh2=open(T2, 'bar')

write (fh2, 'car')

close (fh)
commit (TI)

begin (T3)
begin (T4)
fh3=open(T4, 'foo')

fh4=open(T3, 'foo')
fh5=open (T2, 'fool)

fh6=open(T4, 'baz')

14. [4 points] :Give an equivalent serial order, or write DEADL0CK:Tl ,T4,T3,T2 or T 1 ,T4,T2,T3

Name:

- -

6.033 Spring 2007, Quiz 3 Solutions Page 18 of 23

111.5 Transactional, Distributed Bitdiddler

Ben begins to get really carried away. He decides that he wants the Bitdiddler to be able to access files of
remote Bitdiddler's via a networked file system protocol, but he wants to preserve the transactional behavior
of his system, such that one transaction can update files on several different computers. He remembers that
one way to provide atomicity when there are multiple participating sites is to use the two-phase commit
protocol.

The protocol works as follows: one site is appointed the coordinator. The program that is reading and
writing files runs on this machine, and issues requests to begin and commit transactions and read and write
files on both the local and remote file systems (the "workers").

When the coordinator is ready to commit, it uses the logging-based two-phase commit protocol we studied
in class, which works as follows: First, the coordinator sends a prepare message to each of the workers.
For each worker, if it is able to commit, it writes a log record indicating it is entering the prepared state
and send a yes vote to the coordinator; otherwise it votes no. If all workers vote yes, the coordinator logs
a commit record and sends a commit outcome message to all workers, which in turn log a commit record.
If any worker votes no, the coordinator logs an abort record and sends an abort message to the workers,
which also log abort records. After they receive the transaction outcome, workers send an acknowledgment
message to the coordinator. Once the coordinator has received an acknowledgment from all of the workers,
it logs an end record. Workers that have not learned the outcome of a transaction periodically contact the
coordinator asking for the outcome. If the coordinator has not received an acknowledgment from some of
the workers, it resends the outcome.

Figure 4 shows a coordinator node issuing requests to begin a transaction and read and write files on several
worker nodes.

begin(T1)
read(T1,f5, ...)

Coordinator ,....-*
_ - - - - - _ _

--=...Workers
., .- _ - - - - _ AO- L O0
. .-

. - - b & g i n (~ ~)
write(T1,f4, ...)

Local r Hadslwrites 3

File System I File System 2 File System 3

Figure 4: Coordinator issuing transactional reads and writes to several workers in the two-phase commit based dis-
tributed file system for the Bitdiddler.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 19 of 23

Ben is having a hard time figuring out what to do when one of the nodes crashes in the two phase commit
protocol. When a worker node recovers and finds log records for a transaction, it has several options:

W1. Abort the transaction by writing an "abort" record

W2. Commit the transaction by writing a "commit" record

W3. Resend its vote to the server and ask it for transaction outcome

Similarly, the coordinator has several options when recovering from a crash; it can:

C1. Abort the transaction by writing an "abort" record

C2. Do nothing

C3. Send commit messages to the workers

15. [8 points]: For each of the following situations, indicate the appropriate action that a worker or
coordinator should take:

(Write in the BEST action (Wl-W3 or C1-C3))

(a) The coordinator crashes, finds log records for a transaction but no commit record

Action a

Since there is no commit record, it is safe for the coordinator to abort the transaction. I f it sent
prepare messages, the workers will check back and receive the abort notification.

(b) The coordinator crashes, finds a commit record for a transaction but no end record indicating the
transaction is complete

Action

A commit record on the coordinator means the transaction did commit. By resending the commit,
the works will acknowledge the commit and the coordinator will be able to write an end record.

(c) A worker crashes, finds a prepare record for a transaction

Action W3

The worker does not know ifthe transaction committed or aborted, and thus must ask the coor-
dinatou:

(d) A worker crashes, and finds log records for a transaction, but no prepare or commit records
Action

If the worker does not Jind a prepare or commit record in its log, it doesn 't know if it actually
Jinished executing the transaction, thus it must abort it.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 20 of 23

111.6 Space-efficient, confidential Bitdiddler

Ben uses the original Bitdiddler with synchronous writes. Ben stores many files in the file system on his
handheld computer, and runs out of disk space quickly. He looks at the blocks on the disk and discov-
ers that many blocks have the same content. To reduce space consumption he augments the file system
implementation as follows:

A. 	The file system keeps a table in memory that records for each allocated block a 32-bit non-cryptographic
hash of that block. (When the file system starts, it computes this table from the on-disk state.) Ben
talks to a hashing expert, who tells Ben to use the b-bit (here b = 32) non-cryptographic hash function

H(block) = block mod P

where P is a large b-bit prime number that yields a uniform distribution of hash values throughout the
interval [O . . . 2b - 11.

B. 	 When the file system writes a block b for a file, it checks if the table contains a block number d whose
block content on disk has the same hash value as the hash value for block b. If so, the file system frees
b and inserts d into the file's inode. If there is no block d, the file system writes b to the disk, and puts
b's block number and its hash in the table.

(You can ignore what happens when a user unlinks a file.)

16. 	[3 points]:Occasionally, Ben finds that his system has files with incorrect contents. He suspects
hash collisions are to blame. These might be caused by:

(Circle True or False for each choice.)

(a) True / False Accidental collisions: different data blocks hash to the same 32-bit value.

True. 32 bits is rather small these days. You can easily have more than 232Jiles on a disk,
making accidently collisions likely.

(b) True 	/ False Engineered collisions: adversaries can fabricate blocks that hash to the same 32
bit value.
True. By knowing 8 it is easy for an adversary to construct another block that hashes to the
same value.

(c) True / False A block whose hash is the same as its block number.

False. Blocks are indexed by their block number, not their hash, making collisions between the
two unimportant for system correctness.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 21 of 23

17. [5 points]: For each of the following proposed fixes, circle which of the problems listed in
Question 16 (A, B, or C) it is likely to fix (if you circled False for any of the options in 16, you do not
need to circle that option here):

(Circle ALL that apply)

(a) Use a b = 160-bit non-cryptographic hash in step A of the algorithm.

A B C

A. 160 bits is enough space that is very unlikely that accidental collisions will occur However,
the hash function is still not collision-resistant, thus allowing an adversary to construct another
block with the same hash.

(b) Use a 160-bit cryptographic hash such as SHA- 1 in step A of the algorithm.

A B C

A and B. A 160 bit cryptographic hash is large enough to avoid accidental collisions. Further-
more, a cryptographic hash (like SHA-1) is collision-resistant, meaning that it computationally
impossible for an adversary to jnd a second block with the same hash.

(c) Modify step B of the algorithm so that when a matching hash is found, it compares the contents
of the stored block to the data block and treats the blocks as different unless their contents match.

A B C

A and B. Actually checking the blocks for equality prevents both problems, at the cost of a little
performance.

Name:

6.033 Spring 2007, Quiz 3 Solutions Page 22 of 23

Ben decides he wants to encrypt the contents of the files on disk so that if someone steals his handheld
computer, they cannot read the files stored on it. Ben considers two encryption plans:

User-key encryption: One plan is to give each user a different key and use a secure block encryption
scheme with no cryptographic vulnerabilities to encrypt the user's files. Ben implements this by
storing a table of (user name, key) pairs, which the system stores securely on disk.

Hash-key encryption: One problem with user-key encryption is that it doesn't provide the space
saving if blocks in different files of different users have the same content. Instead, Ben proposes
hash-key encryption,which encrypts a block using the cryptographichash of the content of that block
as a shared-secret key (i.e., E N C R Y P T (~ ~ O C ~ ,bloc block)). Ben reasons that since the output of
the cryptographic hash is pseudo-random, this is just as good as choosing a fresh random key. Ben
implements this scheme by modifying the file system to use the table of hash values as before, but
now the file system writes encrypted blocks to the disk instead of plain-text ones. This way blocks are
encrypted but Ben still gets the space savings for blocks with the same content. You can ignore how
the table of block hash values is maintained; just assume that the file system maintains it securely and
that the file system can find the hash values to decrypt blocks.

18. [6 points1:Which of the following statements are true of hash-key encryption?
(Circle True or False for each choice.)

(a) True / False If Alyssa can guess the contents of a block (by enumerating all possibilities, or
by guessing based on the file metadata, etc), it is easy for her to verify whether her guess of a
block's data is correct.

True. She can try encrypting her guess with the hash-key encryption function. I f the result
matches the block stored on disk, she knows her guess was correct.

(b) True / False If Alyssa can discover the 32-bit block numbers referenced by inodes in the file
system, she can learn something about the contents of Ben's files.
True. IfAlyssa notices that one of herfiles uses the same block($ as one of Ben 'sfiles, Alyssa
knows exactly the contents of the block(s).

(c) True / False The file system can detect when an adversary changes the content of a block on
disk.

True. If the adversary changes a block on disk, when thefile system decrypts the block, it can
hash the resulting value and compare it with the original hash of the block. If they match, the
block is authentic.

Name:

6.033 Spring 2007, Quiz 3 Solutions 	 Page 23 of 23

19. 	[6 points]:Which of the following statements are true of user-key encryption?
(Circle True or False for each choice.)

(a) 	True I False If Alyssa can guess the contents of a block but doesn't know Ben's key, it is easy
for her to verify whether her guess of a block's data is correct.
False. She must try all possible keys to decrypt the block. This is not easy.

(b) 	True I False If Alyssa can discover the 32-bit block numbers referenced by inodes in the file
system, she can learn something about the contents of Ben's files.

False. Knowing the block number gives no information about the content of the blocks in Ben's
files, since those blocks are encrypted with Ben's key.

(c) 	True I False The file system can detect when an adversary changes the content of a block on
disk.
False. The block will decrypt into some value, but the file system has no way of verzfiing that it
is dzferent that the value it originally encrypted.

Ben's brain has exploded. End of Quiz 111.

Eni ov!

Name:

	quiz3_07 2.tif
	quiz3_07 3.tif
	quiz3_07 4.tif
	quiz3_07 5.tif
	quiz3_07 6.tif
	quiz3_07 7.tif
	quiz3_07 8.tif
	quiz3_07 9.tif
	quiz3_07 10.tif
	quiz3_07 11.tif
	quiz3_07 12.tif
	quiz3_07 13.tif
	quiz3_07 14.tif
	quiz3_07 15.tif
	quiz3_07 16.tif
	quiz3_07 17.tif
	quiz3_07 18.tif
	quiz3_07 19.tif
	quiz3_07 20.tif
	quiz3_07 21.tif
	quiz3_07 22.tif
	quiz3_07 23.tif
	quiz3_07 24.tif

