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I Reading Questions

1. [8 points]: Based on the Unison paper entitled “How to Build a File Synchronizer”, by Trevor
Jim et al., state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True / False File synchronization in Unison is idempotent, meaning that, in the absence of failures
or intervening modifications, running it once leaves the file system on both machines in the same state
as running it twice.

Answer: True. Synchronizing two already synchronized directories leaves them both as-is.

B. True / False Synchronization in Unison is atomic, so that either all or none of the files are updated.
Answer: False. If Unison crashes in the middle of a synchronization operation, both directories may

be in an indeterminate state.

C. True / False The Unix command touch changes a file’s modification time without altering its
contents. If a file is touched first in one replica and then in another, a subsequent attempt at synchro-
nization will report a conflict.

Answer: False. Unison compares file hashes to determine if there is a conflict.
D. True / False Unison maintains an archive file to avoid scanning the file system directory structure
when propagating changes.

Answers: False. Unison always scans the directories to look for changes, and the presence of an
archive does not affect the files it scans.

Name: Solutions
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2. [8 points]: Based on the description of LFS in the paper “The Design and Implementation of a
Log-Structured File System” by Mendel Rosenblum and John K. Ousterhout, state whether each of
the following is true or false.
(Circle True or False for each choice.)

A. True / False Relative to the UNIX file system, LFS performs better on random read workloads.
Answer: False. Both will perform about the same number of seeks.

B. True / False Performance of LES is generally better when the file system is using a larger fraction
of the total disk space, since reads are more likely to be sequential.
Answer: False. Unison generally performs worse when the disk is more utilized.

C. True / False Any disk writes made after the most recent checkpoint will be discarded during
recovery.
Answer: False. Unison scans from the checkpoint forward, replaying any writes made since the

checkpoint.

D. True / False Suppose you write two large files (larger than available RAM) to disk, one written
sequentially and one in random order. LFS will perform equally well when reading each of these files
sequentially.

Answer: False. Unison should perform better on the file written in order, since its blocks will be
sequential in the log.

Name: Solutions
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3. [8 points]: Based on the description of RAID in the paper “A Case for Redundant Arrays of
Inexpensive Disks (RAID)” by David Patterson et al., state whether each of the following is true or
false.

(Circle True or False for each choice.)

A. True / False Assuming the disk provides no error detection or correction, a RAID 1 controller can
detect that it has read a corrupt block from disk.
Answer: False. RAID 1 reads from just one disk and writes to both; it provides no ability to detect
errors.

B. True / False A dedicated parity disk (RAID 4) increases throughput over RAID with distributed
parity (RAID 5), by removing the overhead of parity-updates from other disks.
Answer: False. By distributing parity RAID 5 generally performs better than RAID 4, since it re-
moves the bottleneck of the parity disk.

C. True / False A five-disk RAID 4 array has a lower expected availability than a four-disk RAID 4
array (assume that, in each configuration, there is a single parity disk and each disk is identical—i.e.,
of the same size, type, age, manufacturer, etc.).

Answer: True. The five-disk array has a higher probability of two disks simultaneously failing before
one can be repaired, meaning it has a lower expected availability.

D. True / False Assuming the disk provides no error detection or correction, a RAID 5 controller can
correct errors in a corrupt block read from disk.

Answer: False. RAID 5 can detect errors but not correct them. Something more, such as Hamming
Codes (RAID 2) would be needed.

Name: Solutions
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4. [8 points]: Assuming that BGP works as described in the “Wide-Area Internet Routing” paper by
Hari Balakrishnan, state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True / False An autonomous system (AS) will commonly announce the same routes to its upstream
providers and to its peers.

Answer: True. ASes will typically advertise their customers routes to both their providers and peers.
They will not advertise their provider routes to their peers or vice versa (since they have to pay to
route through their providers).

B. True / False MIT’s routers, which speak BGP to their upstream providers, must have a default route
to send packets to the rest of the Internet.

Answer: False. Although MIT’s routers (assuming it is not a Tier 1 AS) would typically have a
default route, they are not required to have one.

For the following two questions, assume that routes to MIT at all routers in the Internet have con-
verged, that there are no failures or policy changes, and that BGP MEDs are not used by any AS.

C. True / False Suppose that MIT has two distinct upstream ISPs, both of whom advertise routes on
behalf of MIT. It is possible for packets sent from a given remote AS to traverse different autonomous
systems in their path to MIT.

Answer: False. Packets to MIT should always traverse the same route once routes have converged.
D. True / False Suppose that MIT has exactly one upstream ISP, which advertises routes on behalf of

MIT. It is possible for packets sent from some AS X fo MIT to traverse different autonomous systems
than packets sent from MIT to X.

Answer: True. There is no guarantee that forward paths are the same as reverse paths in BGP.

Name: Solutions
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S. [8 points]: Based on the “TCP Congestion Control with a Misbehaving Receiver” paper by Stefan
Savage et al, state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True / False Fixing ACK division by only accepting ACKs for packet boundaries prevents commu-
nication with a TCP Daytona stack that acknowledges intermediate bytes in a packet.

Answer: False. The TCP Daytona stack will eventually acknowledge packets that are aligned with
segment boundaries, which will cause the sender to advance its congestion window.

B. True / False TCP Daytona’s implementation of optimistic ACKing asks the sender to retransmit
packets that were lost in transmission after being optimistically ACKed.

Answer: False. The receiver will never ask the sender to retransmit optimistically ACKed packets,
since they will have been discarded by the TCP stack at the sender.

C. True / False Optimistic ACKing can be mitigated by a sender without modifying receivers.
Answer: True. The sender may randomly vary its segment sizes to prevent the receiver from guessing
the segment boundaries, assuming the sender only accepts segment-aligned ACKs.

D. True / False Fixing DupACK spoofing with nonces requires the sender to remember nonce values
for at most one window size worth of packets.

Answer: True. Any packets outside of the current window have already been acknowledged, and
hence their nonces may be discarded.

Name: Solutions
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6. [6 points]: This question refers to the description of NFS “Case study: The Network File System
(NFS)” (section 4.5 in the course notes). In an attempt to improve the performance of his NFS server,
Ben Bitdiddle modifies the NFS protocol implementation at the server to immediately respond to
WRITE RPC requests, rather than waiting until the disk operation succeeds. Which of the following
statements about Ben’s new implementation are true, relative to the unmodified version?:
(Circle True or False for each choice.)
A. True / False Latency of read () system calls on the client may be lower.

Answer: False. Latency of read calls will be unaffected.

B. True / False Latency of write () system calls on the client may be lower.
Answer: True. If the local write cache on the client is full, the client will have to perform write RPCs,
which will complete faster.

C. True / False Latency of close () system calls on the client may be lower.

Answer: True. There is no close RPC in NFS. On close, the client performs write RPCs to flush its
cache back to the server, which will complete faster.

Name: Solutions
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II Sliding Window

Ben Bitdiddle needs to transfer multi-gigabyte files from his radio telescope in California to his computer at
MIT. He gets a special deal from Speedy Sam’s Network Company, who supplies him with network-layer
service between California and MIT on a private network (not part of the Internet). Speedy Sam’s network
topology looks like this:

10,000,000 bytes / sec 1,000,000 bytes / sec
(bidirectional) (bidirectional)
——————> QueueE >
H1 < R iQueue - H2
f light delay: f light delay: .
Sender Speeg :eégnég e Each queue Spee(?zoselcgortmc?: ¥ Receiver
S capactity: 40 e
(bidirectional) packets (bidirectional)
Sliding window size: 10 packets
Data packet size size: 1,000 bytes
Acknowledgement packet size: |40 bytes
Sender retransmit timeout: 5 seconds

Figure 1: Ben’s network configuration, with initial network parameters.

H1 is Ben’s host in California; R is a router in the same room as H1; H2 is Ben’s host at MIT. Both links
are bi-directional, and the two directions operate independently. The H1—R link has a speed-of-light delay
of zero, and a capacity of 10,000,000 bytes/second in each direction. The R—H?2 link has a speed-of-light
delay of 0.020 seconds, and a capacity of 1,000,000 bytes/second in each direction. Router R has two packet
queues, one for each direction. When a packet arrives on a link, R adds it to the end of the queue feeding
the other link. Each queue has maximum length of forty packets: if a packet arrives and the relevant queue
already has 40 packets in it, R discards the packet. You can assume that the CPUs on H1, H2, and the router
are infinitely fast (thus they do not impose any delays due to computation).

Speedy Sam’s network carries IP packets. Ben’s computers have IP-layer software but don’t come with any
transport-layer software, so Ben decides to design his own transport protocol.

All data packets are 1,000 bytes, including IP and link-layer headers. Ben’s protocol splits the file to be
sent into a sequence of segments, each of which fits in a packet, and numbers the segments sequentially
(these are sequence numbers). Each data packet header contains the sequence number of the segment of
data it contains; the sequence number field has enough bits to fit the largest possible sequence number.
Acknowledgment (ACK) packets are 40 bytes long.

Ben’s protocol uses a sliding window with a fixed window size of 10 packets. To cope with the possibility
of lost packets, the sender re-sends each segment in the window every five seconds until it gets an ACK
covering that segment from the receiver. When the sender receives an ACK that advances the window by n
segments, it sends the next n segments as fast as the sender’s link to the router allows. The receiver sends
an ACK for each data packet it receives. Each ACK contains the sequence number of the lowest-numbered
segment that the receiver has not received (i.e. ACKs are cumulative). Whenever an as-yet-unseen segment
arrives at the receiver, the receiver hands the segment to the application (the destination part of the file
transfer program); the receiver does not give the application duplicate segments.

Name: Solutions
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7. [6 points]: At what approximate rate (in segments per second) will Ben’s protocol deliver a
multi-gigabyte file from H1 to H2?
(Circle the BEST answer)

1000
250
40

25

=" 2 a0 v >

10

Answer: 250. After the sender sends its first 10 segments, it has to wait until t = .04 (the network round
trip time) for the first acknowledgment to arrive. At that point, it can start sending the next 10 segments (as
acknowledgments stream in), but has to wait until t = .08 for the acknowledgments for this second set of 10
segments to begin to arrive. Hence, it can send 10 segments / .04 seconds, or 250 segments per second on
average.

8. [6 points]: If Ben wanted to double the rate at which the system delivers file data from H1 to H2,
what should he do?
(Circle the BEST answer)

Double the capacity of the HI—R link, to 20,000,000 bytes/second.
Double the capacity of the R—H?2 link, to 2,000,000 bytes/second.
Double the maximum queue length in the router, to 80 packets.

Double the window size, to 20 packets.

= 2 o v »

Double the speed-of-light delay of the R—H?2 link, to 0.040 seconds.

Answer: D. Doubling the window size will cause the sender to send more packets per round trip time.

Name: Solutions
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After a few months Ben’s budget is cut, and he decides to save money by renting a lower-speed network
from Speedy Sam. Sam reduces the capacity of the R—H2 link to 1,000 bytes/second (i.e. just one packet
per second).

9. [6 points]: Ben starts a file transfer. His protocol sends out the first window of ten segments of
the file. How long will it take from the start of the transfer until the sender receives an ACK for the
last segment in that window?

(Circle the BEST answer)

0.040 seconds
1.020 seconds
1.040 seconds
2.020 seconds
2.080 seconds

10.020 seconds

@ == = ° 0 % P

10.080 seconds

Answer: G. 10.08 seconds. The router sends 1 segment per second. It starts sending the last segment at
time t = 9.00 seconds. The last byte of the last segment arrives at the receiver at time 10.02 seconds — since
it takes 1 second to send the packet and .02 seconds for the bytes to travel across the wire. At this point, the
receiver sends the 40 byte ACK, which takes .04 seconds to put on the wire at 1,000 bytes per second, plus
the .02 second propagation time. Hence, the last byte of the ACK arrives at time 10.08.

Name: Solutions
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10. [6 points]: Ben notices that his protocol at the receiver is delivering segments to the application
at a rate of less than half a segment per second. What’s the best way for him to increase that rate?
(Circle the BEST answer)

Increase the sender’s window size from 10 to 20 segments.
Decrease the sender’s timeout interval from 5 to 2 seconds.
Increase the sender’s timeout interval from 5 to 50 seconds.

Increase the router’s maximum queue length from 40 to 80 packets.

=" 2 a0 v >

None of the above will help.

Answer: C. The most likely cause of the decreased application delivery rate is that, after the first few
packets, the sender re-sends every packet at least once. The reason is that every packet sits in the queue
in the router for at least ten seconds, which is longer than the sender’s retransmit interval. This means that
at least half the packets traversing the R-H2 link are duplicates, so the average rate at which H2 delivers
new segments to the receiving application is at most half a packet per second. Increasing the timeout to an
interval longer than the longest possible queuing plus round-trip time will fix this problem.

Name: Solutions
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III Atomicity

Ben Bitdiddle is building a transactional file system that can make updates to several files appear to be a
single, atomic action. He decides to implement his system using a mechanism similar to shadow copies of
files we discussed in class, which he calls shadow directories. Similar to a shadow copy of a file, a shadow
directory works by having the file system create a copy of a directory and all of its contents before changing
any of the files in that directory, and then using an atomic rename operation to install the new directory at
commit time.

Ben’s implementation is layered on top of the ordinary Unix file system calls. You may assume that the
Unix file system provides atomic implementations of link, unlink, and rename, as well as atomic reads and
writes of single disk sectors.

Ben begins by trying to build a system that provides all-or-nothing atomicity (i.e., if the system crashes
either all changes happen or none of them do) without isolation (i.e., where only one transaction runs at
a time.) Ben’s initial implementation is shown on the next page, where each function is named Txxx to
indicate that it is a transactional implementation. The Trecover procedure is run after the system crashes
and restarts, and before any other file system commands are processed. For brevity, we use the commands
doWrite and doRead; these open the specified file, seek to the specify offset, write or read the specified
bytes, and close the file. Assume that there is also a way for transactions to create and delete files, which we
do not show. Also assume that directories contain only files (not subdirectories).

Name: Solutions
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// Assume that the character "_" is never used in a user-supplied file or directory name
// ++ concatenates strings and converts ints to strings

function Tbegin (directory) :
a. mkdir ("new_" ++ directory)
for each file in directory:
copy (directory ++ "/" +4+ file, "new_ " ++ directory ++ "/" ++ file)

function Tcommit (directory) :
rename (directory, "junkdir")
c. rename ("new_" ++ directory, directory)
delete "Jjunkdir" and its contents

function Trecover (directory) :
if (not exists(directory))
d. rename ("new_" ++ directory, directory)
if (exists("new_" ++ directory))
delete "new_" ++ directory and its contents
if (exists ("junkdir"))
delete "junkdir" and its contents

function Twrite (directory, file, bytes, offset, len):
fpath = "new_" ++ directory ++ "/" ++ file
doWrite (fpath,bytes,offset, len)

function Tread (directory, file, bytes,offset,len):
fpath = "new_" ++ directory ++ "/" ++4+ file
doRead (fpath, bytes, offset, len)

11. [6 points]:

True / False Ben’s implementation ensures all-or-nothing atomicity in the face of system crashes,
assuming there is only one transaction running at a time.

Answer: True. If Ben’s program crashes before the commit point (line b.), the effects of the trans-
action will not be visible to the next transaction. If it crashes after the commit point, the effects of

the transaction will be made visible by the Trecover procedure, and it will be visible to the next
transaction.

Name: Solutions
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12. [6 points]: After which line in the above code is the commit point of Ben’s implementation?
(Circle the BEST answer)

. Line a.
. Line b.

Line c.

S A w @

. Line d.

Answer: Line b. After this line has executed, the transaction is guaranteed to be visible to other transactions,
assuming the recovery procedure runs before any other transactions do.

So far, Ben has assumed there is only one transaction running at a time.

Ben asks his friend Dana Bass to help him add support for concurrent transactions to his implementation.
Dana proposes that Ben modify his code so that it creates a temporary directory tmp_directory_TID
to contain the intermediate (non-committed) state of each transaction while it runs (where TID is a unique
identifier assigned to each transaction before it begins); this will prevent concurrent transactions from seeing
other concurrent transaction’s uncommitted updates.

Dana also proposes keeping multiple versions of the directory around. The idea is that the system will
increment a version number after each transaction runs, and that each new version will reflect the changes
made by one transaction. Successive transactions will start from the files representing the most recent
committed version before they began. She allocates a special version sector on disk, which contains the
current version number. Because it is only one sector, the version sector can be read and written atomically.

She suggests the following implementation (the implementation of Trecover is omitted for brevity; we
are not asking you to analyze the behavior of this code in the face of crashes):

Name: Solutions
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// Tis a data structure containing info about current transaction, created by Thegin

function Tbegin (TID, directory):
T.TID = TID
T.dir = directory
T.vers = read version sector
/ / name of a directory for the version this transaction is reading
T.versDir = T.dir ++ "_" ++4+ T.vers ++ "/"
// name of a temporary directory used by a transaction
T.tmpDir = "tmp_" ++4+ T.dir ++ "_" +4+ T.TID ++ "/"
T.changed = {}

mkdir (T.tmpDir)
for each file in T.versDir:

copy (T.versDir++file, T.tmpDir++file)
return T

function Twrite (T, file, bytes, offset, len):
doWrite(T.tmpDir++file,bytes,offset, len)
T.changed = T.changed U file

function Tread (T, file, bytes,offset,len):
/ / read from temporary directory so transaction sees its own updates
doRead (T.tmpDir++file, bytes,offset, len)

function Tcommit (T) :
acquire (commitLock) // only one committer at a time

vers = read version sector
if (vers != T.vers): // getchanges from transactions that committed while we ran
latestVersDir = T.dir ++ "_" ++ vers ++ "/"

for each file in latestVersDir:
if (file not in T.changed)
copy (T.latestVersDir++file, T.tmpDir++file)

newVers = vers+l

newVersDir = T.dir ++ ++ newVers ++ "/"
rename (T.tmpDir, newVersDir)

write newVers into version sector

release (commitLock)

" n

Note that transactions in Dana’s implementation do not follow two phase locking (in fact, no locks are
acquired at all in Tread or Twrite!)

Name: Solutions
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Unfortunately, Ben runs this version of the code and finds that it doesn’t ensure serializable execution.

13. [10 points]: Which of the following statements about Dana’s code are true (assume that if two
transactions both write to the same file, they write different data to that file, and that a write may
depend on any data read prior to that write.)

(Circle True or False for each choice.)

True / False If Dana’s code were modified to use the a two-phase locking protocol where it acquires
a lock on a file (covering all versions of that file) in Twrite or Tread before reading/writing the
file and releases locks only after commit, it would be serializable.

Answer: False. Two concurrent transactions that both read and update the same value would not be
serializable, since both would make a copy of the directory in Tbegin (reflecting neither of their
changes), and the second one to commit would install its changes in Tcommit (overwriting the
other’s changes.)

True / False Dana’s code does not ensure serializability because one transaction may see another
transaction’s writes before that other transaction has committed.

Answer: False. Dana’s code does not ensure serializability, but there is no way for one transaction
to see another transaction’s writes before that other transaction has committed (since a transaction’s
writes aren’t made visible until after Tcommit runs.)

True / False If Dana’s code were modified to abort during the execution of Tcommit when vers
!= T.vers, her code would be serializable.

Answer: True. By checking to see if vers has changed between Thegin and Tcommit, a trans-
action can verify that no other transactions committed any data concurrently. This effectively ensures
that only one transaction runs at a time, ensuring serializability.

True / False Dana’s code does not ensure serializability because if two transactions both read and
update the same file, both of them may read a version of the file that does not include either of their
changes.

Answer: True. Dana’s code is not serializable, and one reason for that is that there is no guarantee
that two such transactions see each other’s updates.

Name: Solutions
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Sometimes Ben notices that Dana’s implementation does result in a serial equivalent ordering of transac-
tions. For each of the following transaction interleavings generated by Dana’s code indicate whether it
represents a serial-equivalent execution, and if so, indicate the equivalent ordering. Assume that these trans-
action schedules run to completion and there are no crashes or aborts. Here “R f1” or “W f1” indicates a

transaction executed Tread (T, £1..

.) or Twrite (T, £1, ...); assume that if two transactions both

write to the same file, they write different data to that file, and that a write may depend on any data read
prior to that write.

A. B. C.
Tl T2 T1 T2 T1 T2
Tbegin(T1,d) Tbegin(T1,d) Tbegin(T1,d)
Tbegin(T2,d) Tbegin(T2,d) Tbegin(T2,d)
R fl R fl R 2
W f1 R 2 W 2
R fl W2 R fl
W fl W fl W {1
Tcommit(T) Tcommit(T) Tcommit(T)
Tcommit(T) Tcommit(T) W {3
Tcommit(T)

14. [8 points]: Write a serial equivalent schedule for each interleaving, or circle “Not Serializable”.

Answer:

A. Schedule: Not Serializable — Because these transactions run concurrently, T2 does not see T1’s write
to f1 when it reads f1, violating serializability.

B. Schedule: Not Serializable — This interleaving could not occur in a serializable schedule — both trans-
actions write a file the other reads, and neither sees the other’s write.

C. Schedule: Equivalent to T2, T1 — T2 doesn’t see T1’s write, and T1 doesn’t read anything T2 writes,
so this is equivalent to T2-T1.

End of Quiz II

Please ensure that you wrote your name on the front of the quiz,
and circled your recitation section number.
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