
MIT OpenCourseWare
http://ocw.mit.edu

6.033 Computer System Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms.

Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2006

Quiz I

 35

 30

 25

 20

 15

 10

 5

 0
 40 45 50 55 60 65 70 75 80 85 90 95 100

I

6.033 Spring 2006, Quiz 1	 Page 2 of 13

Reading Questions

1. [6 points]: Which of the following statements is true for UNIX as described in reading #5
(Ritchie and Thompson. “The UNIX time-sharing system”, Bell System Technical Journal, 57, 6,
part 2, 1978)?

(Circle True or False for each choice.)

A.	 True / False The i-number of a file is a disk address.

FALSE. The i-number of a file is simply an offset into the i-list.

B.	 True / False Directory entries contain the names of files and their corresponding i-numbers.

TRUE.

C.	 True / False Links may be made to directories.

FALSE. The Unix paper explicitly says links cannot be made to directories.

D.	 True / False A pipe between two processes cannot be established after both have started.

TRUE.

E.	 True / False A parent process shares open files at the time of FORK with its children.

TRUE.

F.	 True / False A parent process knows the “processid” of its child process when FORK completes
but not vice versa.

TRUE.

2. [8 points]: Which of the following statements is true of the X Window System as described in
Reading #6 (Scheifler and Gettys. “The X window System”, ACM Trans. on Graphics, Vol 5, 2, April
1986)?

(Circle True or False for each choice.)

A.	 True / False The X server is an example of a trusted intermediary.

TRUE. The X server acts as an intermediary between different client programs all sharing the
display. Each clients trusts that the server will display its content properly and prevent other
clients from interfering with its windows.

B.	 True / False The X server notifies the client when regions of the client’s window become
visible, but not when regions of the client’s window become obscured.

TRUE. See Section 7 of the X Windows paper on Exposures.

C.	 True / False The X server runs in user mode.

TRUE.

D.	 True / False The X client sends RPCs to the X server to check if a mouse click has occurred.

FALSE. The X server sends event to the clients via a stream; clients are not required to request
them from the server.

Name:

6.033 Spring 2006, Quiz 1	 Page 3 of 13

3. [8 points]: Which of the following statements about the Lockset algorithm as used in the Race-
Track paper (Reading #7 “RaceTrack: Efficient Detection of Data Race Conditions via Adaptive
Tracking” by Yu, Rodeheffer, and Chen, Proc. of the 20th ACM Symposium on Operating Systems
Principles, 2005) is true?

(Circle True or False for each choice.)

A.	 True / False It can be used to detect deadlocks in multi-threaded programs.

FALSE. The Lockset algorithm cannot detect deadlocks.

B.	 True / False It can report false race conditions that are not actually present in the code.

TRUE. Racetrack flags any case where two concurrent threads both access a shared variable
without consistently holding some lock as a race condition. There may be situations (such as
lock-free code) that contain no races but don’t require this strict locking discipline to be fol­
lowed. The experimental results demonstrate clearly that a number of non-race conditions are
detected by the algorithm.

C. True / False It can fail to detect race conditions that are actually present in the code.

TRUE. Racetrack only flags race conditions that it actually sees in a trace of some execution of
the program; different executions may reveal other races.

D.	 True / False It cannot detect race conditions involving three or more threads.

FALSE. Racetrack works just fine with more than two threads (as in the example in Figure 8 in
the RaceTrack paper).

Name:

6.033 Spring 2006, Quiz 1	 Page 4 of 13

4. [8 points]: Louis writes a multithreaded program, which produces an incorrect answer some of
the time, but always completes. He suspects a race condition. Which of the following are strategies
that can reduce or eliminate race conditions in Louis’s program?

(Circle True or False for each choice.)

A.	 True / False Separate a multi-threaded program into multiple single-threaded programs (each
with its own address space) and share data between them via an inter-program communication
primitive like pipes.

TRUE. Although this approach may slow down the system, it will ensure there are no races. (The
threads would no longer share memory, and a race condition can only happen when threads
actually share memory.)

B.	 True / False Apply the one-writer rule.

TRUE. The one-writer rule is a good strategy for helping to avoid race conditions.

C.	 True / False Ensure that for each shared variable v, it is protected by some lock lv.

TRUE. Ensuring that a shared variable is always protected by a lock will guarantee there is no
race on that variable.

D.	 True / False Ensure that all locks are acquired in the same order.

FALSE. Always acquiring locks in the same order will prevent deadlocks. While deadlocks are
arguably a form of race condition, there was no deadlock here since Louis’s program always
completes.

Name:

6.033 Spring 2006, Quiz 1	 Page 5 of 13

II Ben’s OS (BOS)

Ben is having a blast with design project 1. To get a better feeling for the workloads that his superfast file
system might experience, he sketches out a server:

BOSv1

Server

open, read, write, close, unlink

receive_message, send_message, run

download

unlink

start

upload

ports run
superfast file

system

The server supports the following requests:

•	 UPLOAD: upload a file to the server. Attempting to write an existing file results in an error.

•	 DOWNLOAD: download a file from the server. Attempting to read a file that doesn’t exist results in
an error.

•	 UNLINK: remove a file. Attempting to unlink a file that doesn’t exist results in an error.

•	 START: start a new program. This request is not required by DP1 but Ben added it to make it possible
to start programs on the server. This request may fail if there are not enough resources to start the
program.

To support the server, Ben’s operating system (BOS) supports the following supervisor calls (also sometimes
called system calls) in addition to the file system calls OPEN, WRITE, READ, CLOSE, and UNLINK:

•	 RECEIVE MESSAGE(port): A program calling RECEIVE MESSAGE will block until a message des­
tined for port arrives on this machine.

•	 SEND MESSAGE(message): The procedure SEND MESSAGE sends a message to port dest port on
machine destination (see message structure in figure 1).

•	 RUN(name): Applications can start a new program using RUN. RUN creates a new user-level address
space, loads the program specified in its argument into the address space, creates a thread to run the
program, and returns to the caller. The new program may call any of the supervisor calls.

Ben’s names this first BOS implementation BOSv1.
Name:

6.033 Spring 2006, Quiz 1	 Page 6 of 13

The server runs like any other application (i.e., it has been created using RUN) and is implemented as shown
in figure 1. (We suggest you skim the code and continue reading the text of the quiz. The implementation
of the server is straightforward and it doesn’t include any quiz traps. For specific questions you may want
to go back to the code to firm up your understanding of what the specific question is asking.)

5. [5 points]: Looking at the underlined strings in figure 1, which of the following are examples of
names?

(Circle True or False for each choice.)

A.	 True / False “source”

TRUE.

B.	 True / False “1048576”

FALSE. This is a number. All of the others are names and would require a name resolution
algorithm to resolve to a value.

C.	 True / False “request”

TRUE.

D.	 True / False “SERVER PORT”

TRUE.

E.	 True / False “UNLINK”

TRUE.

To handle failures, the RPC stub on the client resends a request if it doesn’t receive a reply within a certain
period of time. On receiving a reply for the request, the stub returns.

6. [8 points]: Assume a single client. Which of the following requests are idempotent (i.e., the
request can be repeated and will always produce the same result as if the request completed once)?

(Circle True or False for each choice.)

A.	 True / False UPLOAD

FALSE. After the first execution of UPLOAD, subsequent calls will cause an error response,
because UPLOAD requires that the file not yet exist.

B.	 True / False DOWNLOAD

TRUE.

C.	 True / False UNLINK

FALSE. Calls of UNLINK (after the first call) will cause an error because the file will no longer
exist.

D.	 True / False START

FALSE. Each call of START causes a new program to start running with its own thread. Having
multiple copies of a program running is not the same as having just one copy. For example, the
second might be unable to make progress because the first one has tied up too many resources.

Name:

6.033 Spring 2006, Quiz 1 Page 7 of 13

structure message {

address destination; // destination address

int dest port; // destination port

address source; // source address

int src port; // source port

int opcode; // operation code of request

int result; // result of request

char name[MAXNAMELEN]; // name of file, no more than MAXNAMELEN charaters

int len; // length of data

char data[1048576]; // data of message, up to 1 Megabyte of characters

}

procedure SERVER()

structure message request, reply;

int fd;

while TRUE do
request ← RECEIVE MESSAGE(SERVER PORT); // Wait for a message sent to port SERVER PORT
if request.opcode = UPLOAD then // upload request?
fd ← OPEN(request.name, O EXCL|O CREATE|O WRONLY); // Writing an existing file is an error

if fd < 0 then reply.result ← fd; // error opening the file?

else {

reply.result ← WRITE(fd, request.data, request.len);

CLOSE(fd);

}
else if request.opcode = DOWNLOAD then // download request?

fd ← OPEN(name, READ ONLY); // Attempt to open the file for reading

if fd < 0 then reply.result ← fd; // error opening the file?

else {

reply.len ← request.len;

reply.result ← READ(fd, reply.data, reply.len);

CLOSE(fd);

}
else if request.opcode = UNLINK then // unlink request?

reply.result ← UNLINK(request.name);

else if request.opcode = START then // start a program?

reply.result ← RUN(request.name);

else { // reply with an error

reply.result ← ERROR OPCODE;

}

reply.destination ← request.source;

reply.dest port ← request.src port;

reply.source ← MYMACHINE;

reply.src port ← SERVER PORT;

reply.opcode ← request.opcode;

SEND MESSAGE(reply);

Figure 1: Ben’s server. (Some strings are underlined for question 5.)

Name:

6.033 Spring 2006, Quiz 1	 Page 8 of 13

7. [9 points]: A single client uses the server. The client sends an RPC to the server to upload
a file and then sends another RPC to unlink the file. The client repeats this sequence many times.
Occasionally the client observes that the reply from the server for the unlink RPC contains an error,
indicating that the file didn’t exist. Which of the following faults could, by itself, caused the observed
behavior? (Remember that the client retries each request until it receives a reply.)

(Circle True or False for each choice.)

A.	 True / False The server failed after the server processed an earlier unlink request but before
sending a reply, and then restarted.
TRUE. If the server fails and then restarts, its reply to the second UNLINK request could be
an error reply (assuming it did not lose the effect of the previous execution of UNLINK in the
failure).

B.	 True / False The network between the client and the server lost a reply.
TRUE. The second reply of the server will reflect the second execution of UNLINK, which will
produce an error reply since at that point the file no longer exists.

C.	 True / False The network between the client and the server lost a request.
FALSE. Since the first request message was lost, the server has not acted on that request, and
therefore the file still exists when the second request message arrives.

D.	 True / False The server is so slow that the client, for a given unlink RPC, resends the request
and then receives the reply for the first request for that RPC.
FALSE. The reply to the first request will indicate a successful completion of the UNLINK
request, even though it arrives after the second request has been sent, because that reply reflects
the effect of the first execution of the UNLINK request.

Ben measures the performance of the server on BOSv1 when it runs many programs concurrently, and is
disappointed with the measured performance. Ben modifies RUN to make the system faster. The new version
of RUN loads the program in the kernel address space and creates a thread to run the program in the kernel
address space. Thus, all threads run in kernel mode in a single address space. The threads are scheduled
preemptively. Ben names this version BOSv2.

8. [8 points]: What program errors can BOSv1 (where each program runs in its own user-level
address space) isolate well and BOSv2 not?

(Circle True or False for each choice.)

A.	 True / False Writes to arbitrary addresses
TRUE. In BOSv2 there is no protection of the address space from program errors and therefore
arbitrary reads, writes, and jumps can occur; none of these is possible in BOSv1. Even arbitrary
reads can be problematic because the read might access private information or be used to obtain
an address that a later instruction might jump or write to.

B.	 True / False Reads from arbitrary addresses

TRUE.

C.	 True / False Jumps to arbitrary addresses

TRUE.

D.	 True / False Infinite loops

Name:	 FALSE. Since both BOSv1 and BOSv2 use preemptive scheduling, program errors that result in
infinite loops are handled identically in each of them.

6.033 Spring 2006, Quiz 1	 Page 9 of 13

9.	 [8 points]: Which overheads can BOSv2 avoid (compared to BOSv1)?
(Circle True or False for each choice.)

A.	 True / False The performance overhead of entering and leaving the kernel.

TRUE. In BOSv2 a switch from one thread to another can be done without entering and leaving
kernel mode since all threads are already running in kernel mode.

B.	 True / False The performance overhead of switching the page-map address register.

TRUE. In BOSv2 there is a single page map used by all threads.

C.	 True / False The memory overhead of allocating a stack per thread.

FALSE. Threads require their own stack in either BOSv1 or BOSv2.

D.	 True / False The performance overhead of loading PC and SP when switching threads.

FALSE. Switching threads always requires loading the PC and SP.

10. [8 points]: Programs in BOSv1 assume they run in their own virtual address space. In BOSv2
the programs and the kernel share a single virtual address space. Ben doesn’t want to recompile or
inspect (and perhaps rewrite) all BOSv1 programs. Which of the following properties of a BOSv1
program would allow Ben to start the program in BOSv2 (using RUN) without having to recompile or
rewrite the program?

(Circle True or False for each choice.)

A.	 True / False All addresses of the program are PC relative.

TRUE. If all addresses of the program are PC-relative, it won’t matter where in the address
space the code and the data it uses reside.

B.	 True / False Global data structures in the program are addressed using absolute addresses.

FALSE. If the program uses absolute addresses either for global data or for naming procedures
(question 10D), these addresses would need to be fixed up (relocated) to account for the actual
locations of the referred to items.

C.	 True / False The program uses multiple threads.

FALSE. The use of multiple threads is irrelevant to the ease of getting a program to run in
BOSv2.

D.	 True / False Procedures in the program are addressed using absolute addresses.

FALSE.

Name:

6.033 Spring 2006, Quiz 1	 Page 10 of 13

Ben just learned about semaphores, a coordination primitive similar to eventcounts, but different. Semaphores
support the following two operations:

•	 DOWN (semaphore sem): decrement if sem > 0 and return; otherwise, wait until another thread
increases sem and then try to decrement again.

•	 UP (semaphore sem): increment sem, wake up all threads waiting on sem, and return.

For completeness, figure 2 lists the pseudocode, which works in the same style as the implementation of
eventscounts in the class notes (see section E.3 of chapter 5). ACQUIRE uses a spin lock and turns off
interrupts. RELEASE releases the lock and enables interrupts.

For all questions you can assume that the thread manager implements the procedures UP and DOWN cor­
rectly; that is, you can just skim the code—there are no quiz traps. In particular, the thread manager correctly
guarantees that UP and DOWN are atomic with respect to concurrent invocations by threads and interrupt
handlers.

shared lock threadtable lock; // the global lock for the thread manager
procedure UP(semaphore sem)

ACQUIRE(threadtable lock);

sem ← sem + 1;

WAKEUP(sem); // set the state of all threads that are waiting on sem to RUNNABLE

RELEASE(threadtable lock);

procedure DOWN(semaphore sem)

ACQUIRE(threadtable lock);

while sem < 1 do { // A

SETWAITING(sem); // B; set this thread’s state to WAITING and record that it is waiting on sem

RELEASE(threadtable lock);

YIELD(CONTINUE); // calling thread releases the processor

ACQUIRE(threadtable lock);

}

sem ← sem − 1;

RELEASE(threadtable lock);

Figure 2: Implementation of semaphores. WAKEUP, SETWAITING, and YIELD are procedures implemented by the thread
manager. WAKEUP sets the state of all threads that are waiting on semaphore sem to RUNNABLE. SETWAITING sets the state
of the calling thread to WAITING and records the semaphore the thread is waiting on.

Name:

6.033 Spring 2006, Quiz 1 Page 11 of 13

Using DOWN and UP, Ben implements a bounded buffer for each port as follows:

structure port info {
semaphore n ← 0;
structure message buffer[NMSG]; // an array of NMSG messages
long integer in ← 0;
long integer out ← 0;
} port infos[NPORT]; // an array of port info’s

procedure INTERRUPT(structure message m)
// an interrupt announcing the arrival of message m

structure port info d; // a local reference to a port info structure
d ← port infos[m.dest port];
if d.in − d.out ≥ NMSG then { // is there space in the buffer?
return; // No, return; i.e., throw message away.
}
d.buffer[d.in mod NMSG] ← m;
d.in ← d.in + 1;
UP(d.n);

procedure RECEIVE MESSAGE(dest port)
structure port info d; // a local reference to a port info structure
d ← port infos[dest port];
DOWN(d.n);
m ← d.buffer[d.out mod NMSG];
d.out ← d.out + 1;
return m;

The BOS implementation maintains an array of port infos. Each port info contains a bounded buffer. When
a message arrives from the network, it generates an interrupt, and the network interrupt handler (INTERRUPT)
puts the message in the bounded buffer of the port specified in the message. If there is no space in that
bounded buffer, the interrupt handler throws the message away. A thread (e.g., Ben’s server) consumes a
message by calling RECEIVE MESSAGE, which removes a message from the bounded buffer of the port it is
receiving from.

To coordinate the interrupt handler and a thread calling RECEIVE MESSAGE, the BOS implementation uses
a semaphore. For each port, BOS keeps a semaphore n that counts the number of messages in the port’s
bounded buffer. If n reaches 0, the thread calling DOWN in RECEIVE MESSAGE will enter the WAITING
state. When INTERRUPT adds a message to the buffer, it calls UP on n, which will wake up the thread (i.e.,
set the thread’s state to RUNNABLE).

Name:

6.033 Spring 2006, Quiz 1	 Page 12 of 13

11. [16 points]: Assume that there are no concurrent invocations of INTERRUPT, and that there are
no concurrent invocations of RECEIVE MESSAGE on the same port. Which of the following statements
is true about the implementation of INTERRUPT and RECEIVE MESSAGE?

(Circle True or False for each choice.)

A. True / False There are no race conditions between two threads that invoke RECEIVE MESSAGE

concurrently on different ports.

TRUE. Two threads that invoke RECEIVE MESSAGE concurrently on different ports will access

different elements of port infos. They therefore access disjoint regions of the memory, and there

are no data races.

B. True / False The complete execution of UP in INTERRUPT will not be interleaved between the
statements labeled A and B in DOWN.

TRUE. DOWN holds threadtable lock between A and B. The first statement of UP acquires

threadtable lock. If one thread invokes UP when another thread is between A and B in DOWN,

the thread that invoked UP will wait until after the thread in DOWN executes B and proceeds on

to releases threadtable lock.

C. True / False Because DOWN and UP are atomic, the processor instructions necessary for
subtracting of sem in DOWN and adding to sem in UP won’t be interleaved incorrectly.

TRUE. If the instructions for changing sem in UP and DOWN were interleaved at all, UP and

DOWN would not be atomic.

D.	 True / False Because in and out may be shared between the interrupt handler running INTER­
RUPT and a thread calling RECEIVE MESSAGE on the same port, it is possible for INTERRUPT

to throw away a message even though there is space in the bounded buffer.

TRUE. Consider the following execution sequence:

1. INTERRUPT is called enough times to fill up d.buffer completely.

2. RECEIVE MESSAGE executes until just before the statement d.out ← d.out + 1; The thread
running RECEIVE MESSAGE is now preempted and does not run until later.

3. INTERRUPT is called. At this point INTERRUPT will throw the message away, even though it
could safely stick the message in the buffer.

Also note that d.int and d.out are both long integers. Changes to long integers are not atomic

— they may require multiple instructions to appropriately update the upper and lower halves of

the long value stored in the integer.

Consider the following sequence:

1. INTERRUPT and RECEIVE MESSAGE are called (perfectly interleaved, with INTERRUPT

called first in each pair) (232) − 1 times. At this point there are no messages in the buffer
and d.in = d.out =0x00000000ffffffff

2. INTERRUPT is called and inserts a message into the buffer. d.in =0x0000000100000000

3. RECEIVE MESSAGE is called. It takes the message out of the buffer and proceeds on to the
statement d.out ← d.out+1. It executes the first half of the update and d.out =0x0000000000000000.
The thread running RECEIVE MESSAGE is now preempted and does not run until later. Note
that the second half of the update will eventually complete the increment of d.out and set it to
0x0000000100000000, but this will not occur until the thread runs later.

4. INTERRUPT is called. It computes that d.in− d.out ≥ NMSG, and so discards the message
even though it could safely stick the message in the buffer.

Name:

6.033 Spring 2006, Quiz 1	 Page 13 of 13

Alyssa claims that semaphores can also be used to make operations atomic. She proposes the following
modification to a port info structure and RECEIVE MESSAGE to allow threads to concurrently invoke RE­
CEIVE MESSAGE on the same port without race conditions (only the commented lines changed):

structure port info {

semaphore n ← 0;

semaphore mutex ←????; // see question below

message buffer[NMSG];

long integer in ← 0;

long integer out ← 0;

} port infos[NPORT];

procedure RECEIVE MESSAGE(dest port)

structure port info d;

d ← port infos[dest port];

DOWN(d.mutex); // enter atomic section

DOWN(d.n);

m ← d.buffer[d.out mod NMSG];

d.out ← d.out + 1;

UP(d.mutex); // leave atomic section

return m;

12. [8 points]: To what value can mutex be initialized to avoid race conditions and deadlocks when
multiple threads call RECEIVE MESSAGE on the same port?

(Circle True or False for each choice.)

A.	 True / False 0

FALSE. If mutex is initialized to 0, the call to DOWN(d.mutex) will always block and the program
will deadlock.

B.	 True / False 1

TRUE. The correct initial value is 1. Only 1 thread at a time will proceed past the call
DOWN(d.mutex), and atomicity is preserved.

C.	 True / False 2

FALSE. Two threads may proceed concurrently past the call DOWN(d.mutex). The statements
of these two threads could interleave in such a way as to cause a race condition; for example,
both could return the same message.

D.	 True / False -1

FALSE. The call to DOWN(d.mutex) will always block and the program will deadlock.

End of Quiz I

Name:

