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CHAPTER 19 
Reliable Data Transport Protocols 

Packets in a best-effort network lead a rough life. They can be lost for any number of rea­
sons, including queue overflows at switches because of congestion, repeated collisions 
over shared media, routing failures, and uncorrectable bit errors. In addition, packets can 
arrive out-of-order at the destination because different packets sent in sequence take differ­
ent paths or because some switch en route reorders packets for some reason. They usually 
experience variable delays, especially whenever they encounter a queue. In some cases, 
the underlying network may even duplicate packets. 

Many applications, such as Web page downloads, file transfers, and interactive termi­
nal sessions would like a reliable, in-order stream of data, receiving exactly one copy of 
each byte in the same order in which it was sent. A reliable transport protocol does the job 
of hiding the vagaries of a best-effort network—packet losses, reordered packets, and du­
plicate packets—from the application, and provides it the abstraction of a reliable packet 
stream. We will develop protocols that also provide in-order delivery. 

A large number of protocols have been developed that various applications use, and 
there are several ways to provide a reliable, in-order abstraction. This chapter will not 
discuss them all, but will instead discuss two protocols in some detail. The first protocol, 
called stop-and-wait, will solve the problem in perhaps the simplest possible way that 
works, but do so somewhat inefficiently. The second protocol will augment the first one 
with a sliding window to significantly improve performance. 

All reliable transport protocols use the same powerful ideas: redundancy to cope with 
packet losses and receiver buffering to cope with reordering, and most use adaptive timers. The 
tricky part is figuring out exactly how to apply redundancy in the form of packet retrans­
missions, in working out exactly when retransmissions should be done, and in achieving 
good performance. This chapter will study these issues, and discuss ways in which a reli­
able transport protocol can achieve high throughput. 

• 19.1 The Problem 

The problem we’re going to solve is relatively easy to state. A sender application wants 
to send a stream of packets to a receiver application over a best-effort network, which 
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can drop packets arbitrarily, reorder them arbitrarily, delay them arbitrarily, and possibly 
even duplicate packets. The receiver wants the packets in exactly the same order in which 
the sender sent them, and wants exactly one copy of each packet.1 Our goal is to devise 
mechanisms at the sending and receiving nodes to achieve what the receiver wants. These 
mechanisms involve rules between the sender and receiver, which constitute the proto­
col. In addition to correctness, we will be interested in calculating the throughput of our 
protocols, and in coming up with ways to maximize it. 

All mechanisms to recover from losses, whether they are caused by packet drops or 
corrupted bits, employ redundancy. We have already studied error-correcting codes such as 
linear block codes and convolutional codes to mitigate the effect of bit errors. In principle, 
one could apply similar coding techniques over packets (rather than over bits) to recover 
from packet losses (as opposed to bit corruption). We are, however, interested not just in 
a scheme to reduce the effective packet loss rate, but to eliminate their effects altogether, 
and recover all lost packets. We are also able to rely on feedback from the receiver that 
can help the sender determine what to send at any point in time, in order to achieve that 
goal. Therefore, we will focus on carefully using retransmissions to recover from packet 
losses; one may combine retransmissions and error-correcting codes to produce a proto­
col that can further improve throughput under certain conditions. In general, experience 
has shown that if packet losses are not persistent and occur in bursts, and if latencies are 
not excessively long (i.e., not multiple seconds long), retransmissions by themselves are 
enough to recover from losses and achieve good throughput. Most practical reliable data 
transport protocols running over Internet paths today use only retransmissions on packets 
(individual links usually use the error correction methods, such as the ones we studied 
earlier, and may also augment them with a limited number of retransmissions to reduce 
the link-level packet loss rate. 

We will develop the key ideas for two kinds of reliable data transport protocols: stop­

and-wait and sliding window with a fixed window size. We will use the word “sender” 
to refer to the sending side of the transport protocol and the word “receiver” to refer to 
the receiving side. We will use “sender application” and “receiver application” to refer to 
the processes (applications) that would like to send and receive data in a reliable, in-order 
manner. 

• 19.2 Stop-and-Wait Protocol 

The high-level idea in this protocol is simple. The sender attaches a transport-layer header 
to every data packet, which includes a unique identifier for the data packet (the transport-
layer header is distinct from the network-layer packet header that contains the destination 
address, hop limit, and header checksum discussed in Chapters 17 and 18). Ideally, this 
unique identifier will never be reused for two different packets on the same stream.2 The 

1The reason for the “exactly one copy” requirement is that the mechanism used to solve the problem will 
end up retransmitting packets, so duplicates may occur that need to be filtered out. In some networks, it is 
possible that some links may end up duplicating packets because of mechanisms they employ to improve the 
packet delivery probability or bit-error rate over the link. 

2In an ideal implementation, such reuse will never occur. In practice, however, a transport protocol may 
use a sequence number field whose width is not large enough and sequence numbers may wrap-around. 
In this case, it is important to ensure that two distinct unacknowledged data packets never have the same 
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Figure 19-1: The stop-and-wait protocol. Each picture has a sender timeline and a receiver timeline. Time 

starts at the top of each vertical line and increases moving downward. The picture on the left shows what 

happens when there are no losses; the middle shows what happens on a data packet loss; and the right 

shows how duplicate packets may arrive at the receiver because of an ACK loss. 

receiver, upon receiving the data packet with identifier k, will send an acknowledgment 
(ACK) to the sender; the header of this ACK contains k, so the receiver communicates “I 
got data packet k” to the sender. Both data packets and ACKs may get lost in the network. 

In the stop-and-wait protocol, the sender sends the next data packet on the stream if, 
and only if, it receives an ACK for k. If it does not get an ACK within some period of time, 
called the timeout, the sender retransmits data packet k. 

The receiver’s job is to deliver each data packet it receives to the receiver application. 
Figure 19-1 shows the basic operation of the protocol when packets are not lost (left) and 
when data packets are lost (right). 

Three properties of this protocol bear some discussion: 

1. how to pick unique identifiers, 

2. why this protocol may deliver duplicate data packets to the receiver application, and 
how the receiver can prevent that from occurring, and 

3. how to pick the timeout. 

We discuss each of these in turn below. 

sequence number. 
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• 19.2.1 Selecting Unique Identifiers: Sequence Numbers 

The sender may pick any unique identifier for a data packet. In most transport protocols, 
a convenient and effective choice of unique identifier is to use an incrementing sequence 
number. The simplest way to achieve this goal is for the sender and receiver to agree on 
the initial value of the identifier (which for our purposes will be taken to be 1), and then 
increment the identifier by 1 for each subsequent new data packet sent. Thus, the data 
packet sent after the ACK for k is received by the sender will have identifier k + 1. These 
incrementing identifiers are called sequence numbers. 

In practice, transport protocols like TCP (Transmission Control Protocol), the standard 
Internet protocol for reliable data delivery, devote considerable effort to picking a good 
initial sequence number to avoid overlaps with previous instantiations of reliable streams 
between the same communicating processes. We won’t worry about these complications 
in this chapter, except to note that establishing and properly terminating these streams 
(aka connections) reliably is a non-trivial problem. TCP also uses a sequence number that 
identifies the starting byte offset of the packet in the stream, to handle variable packet sizes. 

• 19.2.2 Semantics of this Stop-and-Wait Protocol 

It is easy to see that the stop-and-wait protocol achieves reliable data delivery as long as 
each of the links along the path have a non-zero packet delivery probability. However, it 
does not achieve exactly once semantics; its semantics are at least once—i.e., each packet will 
be delivered to the receiver application either once or more than once. 

One reason is that the network could drop ACKs, as shown in Figure 19-1 (right). A 
data packet may have reached the receiver, but the ACK doesn’t reach the sender, and the 
sender will then timeout and retransmit the data packet. The receiver will get multiple 
copies of the data packet, and deliver both to the receiver application. Another reason 
is that the sender might have timed out, but the original data packet may not actually 
have been lost. Such a retransmission is called a spurious retransmission, and is a waste of 
bandwidth. The sender may strive to reduce the number of spurious retransmissions, but 
it is impossible to eliminate them in general. 

Preventing duplicates: The solution to the problem of duplicate data packets arriving 
at the receiver is for the receiver to keep track of the last in-sequence data packet it has 
delivered to the application. At the receiver, let us maintain the sequence number of the 
last in-sequence data packet in the variable rcv seqnum. If a data packet with sequence 
number less than or equal to rcv seqnum arrives, then the receiver sends an ACK for the 
packet and discards it. Note that the only way a data packet with sequence number smaller 
than rcv seqnum can arrive is if there were reordering in the network and the receiver 
gets an old data packet; for such packets, the receiver can safely not send an ACK because 
it knows that the sender knows about the receipt of the packet and has sent subsequent 
packets. This method prevents duplicate packets from being delivered to the receiving 
application. 

If a data packet with sequence number rcv seqnum + 1 arrives, then the receiver 
sends an ACK to the sender, delivers the data packet to the application, and increments 
rcv seqnum. Note that a data packet with sequence number greater than rcv seqnum 
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+ 1 should never arrive in this stop-and-wait protocol because that would imply that the 
sender got an ACK for rcv seqnum + 1, but such an ACK would have been sent only if 
the receiver got the corresponding data packet. So, if such a data packet were to arrive, 
then there must be a bug in the implementation of either the sender or the receiver in this 
stop-and-wait protocol. 

With this modification, the stop-and-wait protocol guarantees exactly-once delivery to 
the application.3 

• 19.2.3 Setting Timeouts 

The final design issue that we need to nail down in our stop-and-wait protocol is setting 
the value of the timeout. How soon after the transmission of a packet should the sender 
conclude that the data packet (or the ACK) was lost, and go ahead and retransmit? One 
approach might be to use some constant, but then the question is what it should be set to. 
Too small, and the sender may end up retransmitting data packets before giving enough 
time for the ACK for the original transmission to arrive, wasting network bandwidth. Too 
large, and one ends up wasting network bandwidth and simply idling before retransmit­
ting. 

The natural time-scale in the protocol is the time between the transmission of a data 
packet and the arrival of the ACK for the packet. This time is called the round-trip time, 
or RTT, and plays a crucial role in all reliable transport protocols. A good value of the 
timeout must clearly depend on the RTT; it makes no sense to use a timeout that is not 
bigger than the mean RTT (and in fact, it must be quite a bit bigger than the average, as 
we’ll see). 

The other reason the RTT is an important concept is that the throughput (in packets per 
second) achieved by the stop-and-wait protocol is inversely proportional to the RTT (see 
Section 19.4). In fact, the throughput of the sliding window protocol also depends on the 
RTT, as we will see. 

The next section describes a procedure to estimate the RTT and set sender timeouts. 
This technique is general and applies to a variety of protocols, including both stop-and­
wait and sliding window. 

• 19.3 Adaptive RTT Estimation and Setting Timeouts 

The RTT experienced by packets is variable because the delays in a best-effort network are 
variable. An example is shown in Figure 19-2, which shows the RTT of an Internet path 
between two hosts (blue) and the packet loss rate (red), both as a function of the time-of­
day. The “rtt median-filtered” curve is the median RTT computed over a recent window 
of samples, and you can see that even that varies quite a bit. Picking a timeout equal to 
simply the mean or median RTT is not a good idea because there will be many RTT samples 
that are larger than the mean (or median), and we don’t want to timeout prematurely and 
send spurious retransmissions. 

3We are assuming here that the sender and receiver nodes and processes don’t crash and restart; handling 
those cases make “exactly once” semantics considerably harder than described here and require stable storage 
that persists across crashes. 
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Figure 19-2: RTT variations are pronounced in many networks. 

A good solution to the problem of picking the timeout value uses two tools we have 
seen earlier in the course: probability distributions (in our case, of the RTT estimates) and a 
simple filter design. 

Suppose we are interested in estimating a good timeout post facto: i.e., suppose we run 
the protocol and collect a sequence of RTT samples, how would one use these values to 
pick a good timeout? We can take all the RTT samples and plot them as a probability 
distribution, and then see how any given timeout value will have performed in terms of 
the probability of a spurious retransmission. If the timeout value is T , then this probability 
may be estimated as the area under the curve to the right of “T” in the picture on the left 
of Figure 19-3, which shows the histogram of RTT samples. Equivalently, if we look at the 
cumulative distribution function of the RTT samples (the picture on the right of Figure 19­
3, the probability of a spurious retransmission may be assumed to be the value of the y-axis 
corresponding to a value of T on the x-axis. 

Real-world distributions of RTT are not actually Gaussian, but an interesting property 
of all distributions is that if you pick a threshold that is a sufficient number of standard 
deviations greater than the mean, the tail probability of a sample exceeding that threshold 
can be made arbitrarily small. (For the mathematically inclined, a useful result for arbi­
trary distributions is Chebyshev’s inequality, which you might have seen in other courses 
already (or soon will): P (|X − μ| ≥ kσ) ≤ 1/k2, where μ is the mean and σ the standard 
deviation of the distribution. For Gaussians, the tail probability falls off much faster than 
1/k2; for instance, when k = 2, the Gaussian tail probability is only about 0.05 and when 
k = 3, the tail probability is about 0.003.) 

The protocol designer can use past RTT samples to determine an RTT cut-off so that 
only a small fraction f of the samples are larger. The choice of f depends on what spuri­
ous retransmission rate one is willing to tolerate, and depending on the protocol, the cost 
of such an action might be small or large. Empirically, Internet transport protocols tend to 

Courtesy of the Cooperative Association for Internet Data Analysis. Used with permission.
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Figure 19-3: RTT variations on a wide-area cellular wireless network (Verizon Wireless’s 3G CDMA Rev 

A service) across both idle periods and when data transfers are in progress, showing extremely high RTT 

values and high variability. The x-axis in both pictures is the RTT in milliseconds. The picture on the left 

shows the histogram (each bin plots the total probability of the RTT value falling within that bin), while 

the picture on the right is the cumulative distribution function (CDF). These delays suggest a poor network 

design with excessively long queues that do nothing more than cause delays to be very large. Of course, 

it means that the timeout method must adapt to these variations to the extent possible. (Data collected in 

November 2009 in Cambridge, MA and Belmont, MA.) 

be conservative and use k = 4, in an attempt to make the likelihood of a spurious retrans­
mission very small, because it turns out that the cost of doing one on an already congested 
network is rather large. 

Notice that this approach is similar to something we did earlier in the course when 
we estimated the bit-error rate from the probability density function of voltage samples, 
where values above (or below) a threshold would correspond to a bit error. In our case, 
the “error” is a spurious retransmission. 

So far, we have discussed how to set the timeout in a post-facto way, assuming we knew 
what the RTT samples were. We now need to talk about two important issues to complete 
the story: 

1. How can the sender obtain RTT estimates? 

2. How should the sender estimate the mean and deviation and pick a suitable timeout? 

Obtaining RTT estimates. If the sender keeps track of when it sent each data packet, then 
it can obtain a sample of the RTT when it gets an ACK for the packet. The RTT sample is 
simply the difference in time between when the ACK arrived and when the data packet 
was sent. An elegant way to keep track of this information in a protocol is for the sender 
to include the current time in the header of each data packet that it sends in a “timestamp” 
field. The receiver then simply echoes this time in its ACK. When the sender gets an ACK, 
it just has to consult the clock for the current time, and subtract the echoed timestamp to 
obtain an RTT sample. 

RTT sample 

Probability 

RTT sample 

Cumula,ve probability (CDF) 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Calculating the timeout. As explained above, our plan is to pick a timeout that uses 
both the average and deviation of the RTT sample distribution. The sender must take two 
factors into account while estimating these values: 

1. It must not get swayed by infrequent samples that are either too large or too small. 
That is, it must employ some sort of “smoothing”. 

2. It must weigh more recent estimates higher than old ones, because network condi­
tions could have changed over multiple RTTs. 

Thus, what we want is a way to track changing conditions, while at the same time not 
being swayed by sudden changes that don’t persist. 

Let’s look at the first requirement. Given a sequence of RTT samples, r0, r1, r2, . . . , rn, 
we want a sequence of smoothed outputs, s0, s1, s2, . . . , sn that avoids being swayed by 
sudden changes that don’t persist. This problem sounds like a filtering problem, which we 
have studied earlier. The difference, of course, is that we aren’t applying it to frequency 
division multiplexing, but the underlying problem is what a low-pass filter (LPF) does. 

A simple LPF that provides what we need has the following form: 

sn = αrn + (1  − α)sn−1, (19.1) 

where 0 < α < 1. 
To see why Eq. (19.1) is a low-pass filter, let’s write down the frequency response, H(Ω). 

We know that if rn = ejΩn, then sn = H(Ω)ejΩn. Letting z = ejΩ, we can rewrite Eq. (19.1) 
as 

n (n−1)H(Ω)z = αzn + (1  − α)H(Ω)z , 

which then gives us 
αz 

H(Ω) = , (19.2) 
z − (1 − α)

This filter has a single real pole, and is stable when 0 < α< 1. The peak of the frequency 
response is at Ω = 0. 

What does α do? Clearly, large values of α mean that we are weighing the current 
sample much more than the existing s estimate, so there’s little memory in the system, and 
we’re therefore letting higher frequencies through more than a smaller value of α. What 
α does is determine the rate at which the frequency response of the LPF tapers: small α 
makes lets fewer high-frequency components through, but at the same time, it takes more 
time to react to persistent changes in the RTT of the network. As α increases, we let more 
higher frequencies through. Figure 19-4 illustrates this point. 

Figure 19-5 shows how different values of α react to a sudden non-persistent change 
in the RTT, while Figure 19-6 shows how they react to a sudden, but persistent, change in 
the RTT. Empirically, on networks prone to RTT variations due to congestion, researchers 
have found that α between 0.1 and 0.25 works well. In practice, TCP uses α = 1/8. 

The specific form of Equation 19.1 is very popular in many networks and computer 
systems, and has a special name: exponential weighted moving average (EWMA). It is  
a “moving average” because the LPF produces a smoothed estimate of the average be­
havior. It is “exponentially weighted” because the weight given to older samples decays 
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Figure 19-4: Frequency response of the exponential weighted moving average low-pass filter. As α de­

creases, the low-pass filter becomes even more pronounced. The graph shows the response for α = 

0.9, 0.5, 0.1, going from top to bottom. 

Figure 19-5: Reaction of the exponential weighted moving average filter to a non-persistent spike in the 

RTT (the spike is double the other samples). The smaller α (0.1, shown on the left) doesn’t get swayed by 

it, whereas the bigger value (0.5, right) does. The output of the filter is shown in green, the input in blue. 

geometrically: one can rewrite Eq. 19.1 as 

sn = αrn + α(1 − α)rn−1 + α(1 − α)2 rn−2 + . . .  + α(1 − α)n−1 r1 + (1  − α)n r0, (19.3) 

observing that each successive older sample’s weight is a factor of (1 − α) “less important” 
than the previous one’s. 

With this approach, one can compute the smoothed RTT estimate, srtt, quite easily 
using the pseudocode shown below, which runs each time an ACK arrives with an RTT 
estimate, r. 

srtt ← αr + (1  − α)srtt 
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Figure 19-6: Reaction of the exponential weighted moving average filter to a persistent change (doubling) 

in the RTT. The smaller α (0.1, shown on the left) takes much longer to track the change, whereas the bigger 

value (0.5, right) responds much quicker. The output of the filter is shown in green, the input in blue. 

What about the deviation? Ideally, we want the sample standard deviation, but it turns 
out to be a bit easier to compute the mean linear deviation instead.4 The following elegant 
method performs this task: 

dev ← |r − srtt|

rttdev ← β · dev + (1− β) · rttdev
 

Here, 0 < β <  1, and we apply an EWMA to estimate the linear deviation as well. TCP 
uses β = 0.25; again, values between 0.1 and 0.25 have been found to work well. 

Finally, the timeout is calculated very easily as follows: 

timeout ← srtt + 4 · rttdev 

This procedure to calculate the timeout runs every time an ACK arrives. It does a great 
deal of useful work essential to the correct functioning of any reliable transport protocol, 
and it can be implemented in less than 10 lines of code in most programming languages! 
The reader should note that this procedure does not depend on whether the transport 
protocol is stop-and-wait or sliding window; the same method works for both. 

Exponential back-off of the timeout. When a timeout occurs and the sender retransmits 
a data packet, it might be lost again (or its ACK might be lost). In that case, it is possible (in 
networks where congestion is the main reason for packet loss) that the network is heavily 
congested. Rather than using the same timeout value and retransmitting, it would be 
prudent to take a leaf from the exponential back-off idea we studied earlier with contention 
MAC protocols and double the timeout value. Eventually, when the retransmitted data 
packet is acknowledged, the sender can revert to the timeout value calculated from the 
mean RTT and its linear deviation. Most reliable transport protocols use an adaptive timer 
with such an exponential back-off mechanism. 

4The mean linear deviation is always at least as big as the sample standard deviation, so picking a timeout 
equal to the mean plus k times the linear deviation has a tail probability no larger than picking a timeout equal 
to the mean plus k times the sample standard deviation. 
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• 19.4 Throughput of Stop-and-Wait 

We now show how to calculate the throughput of the stop-and-wait protocol. Clearly, 
the maximum throughput occurs when there are no packet losses. The sender sends one 
packet every RTT, so the maximum throughput is exactly that. 

We can also calculate the throughput of stop-and-wait when the network has a packet 
loss rate of C. For convenience, we will treat C as the bi-directional loss rate; i.e., the prob­
ability of any given packet or its ACK getting lost is C.5 We will assume that the packet 
loss distribution is independent and identically distributed. What is the throughput of the 
stop-and-wait protocol in this case? 

The answer clearly depends on the timeout that’s used. Let’s assume that the retrans­
mission timeout is RTO, which we will assume to be a constant for simplicity (i.e., it is 
the same throughout the connection and the sender doesn’t use any exponential back-off). 
These assumptions mean that the calculation below may be viewed as a (good) upper 
bound on the throughput. 

Let T denote the expected time taken to send a data packet and get an ACK for it. Ob­
serve that with probability 1− C, the data packet reaches the receiver and its ACK reaches 
the sender. On the other hand, with probability C, the sender needs to time out and re­
transmit a data packet. We can use this property to write an expression for T : 

T = (1− C) · RTT + C(RTO + T ), (19.4) 

because once the sender times out, the expected time to send a data packet and get an 
ACK is exactly T , the number we want to calculate. Solving Equation (19.4), we find that 

£T = RTT + · RTO. 1−£ 
The expected throughput of the protocol is then equal to 1/T packets per second.6 

The good thing about the stop-and-wait protocol is that it is very simple, and should be 
used under two circumstances: first, when throughput isn’t a concern and one wants good 
reliability, and second, when the network path has a small RTT such that sending one data 
packet every RTT is enough to saturate the bandwidth of the link or path between sender 
and receiver. 

On the other hand, a typical Internet path between Boston and San Francisco might 
have an RTT of about 100 milliseconds. If the network path has a bit rate of 1 megabit/s, 
and we use a data packet size of 10,000 bits, then the maximum throughput of stop-and­
wait would be only 10% of the possible rate. And in the face of packet loss, it would be 
much lower than that. 

The next section describes a protocol that provides considerably higher throughput. It 

5In general, we will treat the loss rate as a probability of loss, so it is a unit-less quantity between 0 and 1; 
it is not a “rate” like the throughput. A better term might be the “loss probability” or a “loss ratio” but “loss 
rate” has become standard terminology in networking. 

6The careful reader or purist may note that we have only calculated T , the expected time between the trans­
mission of a data packet and the receipt of an ACK for it. We have then assumed that the expected value of the 
reciprocal of X , which is a random variable whose expected value is T , is equal to 1/T . In general, however, 
1/E[X] is not equal to E[1/X]. But the formula for the expected throughput we have written does in fact 
hold. Intuitively, to see why, define Yn = X1 + X2 + . . .Xn. As  n → ∞, one can show using the Chebyshev 
inequality that the probability that |Yn − nT | > δn  goes to 0 or any positive δ. That is, when viewed over a 
long period of time, the random variable X looks like a constant—which is the only distribution for which the 
expected value of the reciprocal is equal to the reciprocal of the expectation. 



  

 

 

 

 

 

316 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS 

Sender Receiver 
1 

2

:

4 

5 

6 

7 

8 

9 

10 

, 

1 

2 

: 

4 

5 

6 

7 

9 

10010
11 

12 

1: 

14 

:::: 

44 
8 

11 

12 

1: 
8 

 
 
 
 
 1 

1 

1 

1 
Rxmit 8 

t KS 

Packet loSt 

Sender'S  window Size = 5 

Figure 19-7: The sliding window protocol in action (W = 5 here). 

builds on all the mechanisms used in the stop-and-wait protocol. 

• 19.5 Sliding Window Protocol 

The idea is to use a window of data packets that are outstanding along the path between 
sender and receiver. By “outstanding”, we mean “unacknowledged”. The idea then is 
to overlap data packet transmissions with ACK receptions. For our purposes, a window 
size of W data packets means that the sender has at most W outstanding data packets at 
any time. Our protocol will allow the sender to pick W , and the sender will try to have 
W outstanding data packets in the network at all times. The receiver is almost exactly 
the same as in the stop-and-wait case, except that it must also buffer data packets that 
might arrive out-of-order so that it can deliver them in order to the receiving application. 
This enhancement makes the receiver more complicated than before, but this complexity 
is worth the improvement in throughput in most situations. 

The key idea in the protocol is that the window slides every time the sender gets an 
ACK. The reason is that the receipt of an ACK is a positive signal that one data packet 
left the network, and so the sender can add another to replenish the window. This plan is 
shown in Figure 19-7 that shows a sender (top line) with W = 5 and the receiver (bottom 
line) sending ACKs (dotted arrows) whenever it gets a data packet (solid arrow). Time 
moves from left to right here. 

There are at least two different ways of defining a window in a reliable transport proto­
col. Here, we will use the following: 
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A window size of W means that the maximum number of outstanding (un­

acknowledged) data packets between sender and receiver is W . 

When there are no packet losses, the operation of the sliding window protocol is fairly 
straightforward. The sender transmits the next in-sequence data packet every time an 
ACK arrives; if the ACK is for data packet k and the window is W , the data packet sent 
out has sequence number k+W . The receiver ACKs each data packet echoing the sender’s 
timestamp and delivers packets in sequence number order to the receiving application. 
The sender uses the ACKs to estimate the smoothed RTT and linear deviations and sets 
a timeout. Of course, the timeout will only be used if an ACK doesn’t arrive for a data 
packet within that duration. 

We now consider what happens when a packet is lost. Suppose the receiver has received 
data packets 0 through k − 1 and the sender doesn’t get an ACK for data packet k. If  
the subsequent data packets in the window reach the receiver, then each of those packets 
triggers an ACK. So the sender will have the following ACKs assuming no further packets 
are lost: k + 1, k  + 2, . . . , k  +W − 1. Moreover, upon the receipt of each of these ACKs, 
an additional new data packet will get sent with an even higher sequence number. But 
somewhere in the midst of these new data packet transmissions, the sender’s timeout for 
data packet k will occur, and the sender will retransmit that packet. If that data packet 
reaches, then it will trigger an ACK, and if that ACK reaches the sender, yet another new 
data packet with a new sequence number one larger than the last sent so far will be sent. 

Hence, this protocol tries hard to keep as many data packets outstanding as possible, 
but not exceeding the window size, W . If  C data packets or ACKs get lost, then the effective 
number of outstanding data packets reduces to W − C, until one of them times out, is 
retransmitted and received successfully by the receiver, and its ACK received successfully 
at the sender. 

We will use a fixed size window in our discussion in this chapter. The sender picks 
a maximum window size and does not change that during a stream. In practice, most 
practical transport protocols on the Internet should implement a congestion control strategy 
to adjust the window size to prevailing network conditions (level of congestion, rate of 
data delivery, packet loss rates, round-trip times, etc.) 

• 19.5.1 Sliding Window Sender 

We now describe the salient features of the sender side of this fixed-size sliding window 
protocol. The sender maintains unacked pkts, a buffer of unacknowledged data packets. 
Every time the sender is called (by a fine-grained timer, which we assume fires each slot), 
it first checks to see whether any data packets were sent greater than “timeout” seconds 
ago (assuming time is maintained in seconds). If so, the sender retransmits each of these 
data packets, and takes care to change the packet transmission time of each of these pack­
ets to be the current time. For convenience, we usually maintain the time at which each 
packet was last sent in the packet data structure, though other ways of keeping track of 
this information are also possible. 

After checking for retransmissions, the sender proceeds to see whether any new data 
packets can be sent. To properly check if any new packets can be sent, the sender maintains 
a variable, outstanding, which keeps track of the current number of outstanding data 
packets. If this value is smaller than the maximum window size, the sender sends a new 
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data packet, setting the sequence number to be max seq + 1, where max seq is the highest 
sequence number sent so far. Of course, we should remember to update max seq as well, 
and increment outstanding by 1. 

Whenever the sender gets an ACK, it should remove the acknowledged data packet 
from unacked pkts (assuming it hasn’t already been removed), decrement outstanding, 
and call the procedure to calculate the timeout (which will use the timestamp echoed in 
the current ACK to update the EWMA filters and update the timeout value). 

We would like outstanding to keep track of the number of unackowledged data pack­
ets between sender and receiver. We have described the method to do this task as follows: 
increment it by 1 on each new data packet transmission, and decrement it by 1 on each 
ACK that was not previously seen by the sender, corresponding to a packet the sender had 
previously sent that is being acknowledged (as far as the sender is concerned) for the first 
time. The question now is whether outstanding should be adjusted when a retransmis­
sion is done. A little thought will show that it should not be. The reason is that it is precisely 
on a timeout of a data packet that the sender believes that the packet was actually lost, and 
in the sender’s view, the packet has left the network. But the retransmission immediately 
adds a data packet to the network, so the effect is that the number of outstanding packets 
is exactly the same. Hence, no change is required in the code. 

Implementing a sliding window protocol is sometimes error-prone even when one com­
pletely understands the protocol in one’s mind. Three kinds of errors are common. First, 
the timeouts are set too low because of an error in the EWMA estimators, and data packets 
end up being retransmitted too early, leading to spurious retransmissions. In addition to 
keeping track of the sender’s smoothed round-trip time (srtt), RTT deviation, and timeout 
estimates,7 it is a good idea to maintain a counter for the number of retransmissions done 
for each data packet. If the network has a certain total loss rate between sender and re­
ceiver and back (i.e., the bi-directional loss rate), pl, the number of retransmissions should 

1be on the order of 1−pl 
− 1, assuming that each packet is lost independently and with the 

same probability. (It is a useful exercise to work out why this formula holds.) If your im­
plementation shows a much larger number than this prediction, it is very likely that there’s 
a bug in it. 

Second, the number of outstanding data packets might be larger than the configured 
window, which is an error. If that occurs, and especially if a bug causes the number of 
outstanding packets to grow unbounded, delays will increase and it is also possible that 
packet loss rates caused by congestion will increase. It is useful to place an assertion or two 
that checks that the outstanding number of data packets does not exceed the configured 
window. 

Third, when retransmitting a data packet, the sender must take care to modify the time 
at which the packet is sent. Otherwise, that packet will end up getting retransmitted re­
peatedly, a pretty serious bug that will cause the throughput to diminish. 

• 19.5.2 Sliding Window Receiver 

At the receiver, the biggest change to the stop-and-wait case is to maintain a list of received 
data packets that are out-of-order. Call this list rcvbuf. Each data packet that arrives is 
added to this list, assuming it is not already on the list. It’s convenient to store this list 

7In our lab, this information will be printed when you click on the sender node. 
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in increasing sequence order. Then, check to see whether one or more contiguous data 
packets starting from rcv seqnum + 1 are in  rcvbuf. If they are, deliver them to the 
application, remove them from rcvbuf, and remember to update rcv seqnum. 

• 19.5.3 Throughput 

What is the throughput of the sliding window protocol we just developed? Clearly, we 
send W data packets per RTT when there are no data packet or ACK losses, so the through­
put in the absence of losses is W/RTT packets per second. So the question one should ask 
is, what should we set W to in order to maximize throughput, at least when there are no 
data packet or ACK losses? After answering this question, we will provide a simple for­
mula for the throughput of the protocol in the absence of losses, and then finally consider 
packet losses. 

Setting W 

One can address the question of how to choose W using Little’s law. Think of the entire 
bi-directional path between the sender and receiver as a single queue (in reality it’s more 
complicated than a single queue, but the abstraction of a single queue still holds). W is the 
number of (unacknowledged) packets in the system and RTT is the mean delay between 
the transmission of a data packet and the receipt of its ACK at the sender (upon which the 
sender transmits a new data packet). We would like to maximize the processing rate of 
this system. Note that this rate cannot exceed the bit rate of the slowest, or bottleneck, link 
between the sender and receiver (i.e., the rate of the bottleneck link) . If that rate is B packets 
per second, then by Little’s law, setting W = B × RTT will ensure that the protocol comes 
close to achieving a thoroughput equal to the available bit rate. 

But what should the RTT be in the above formula? After all, the definition of a “RTT 
sample” is the time that elapses between the transmission of a data packet and the receipt 
of an ACK for it. As such, it depends on other data using the path. Moreover, if one looks 
at the formula B = W/ RTT, it suggests that one can simply increase the window size W 
to any value and B may correspondingly just increase. Clearly, that can’t be right! 

Consider the simple case when there is only one connection active over a network path. 
Observe that the RTT experienced by a packet P sent on the connection may be broken 
into two parts: one part that does not depend on any queueing delay (i.e., the sum of the 
propagation, transmission, and processing delays of the packet and its ACK), and one part 
that depends on how many other packets were ahead of P in the bottleneck queue. (Here 
we are assuming that ACKs experience no queueing, for simplicity.) Denote the RTT in the 
absence of queuing as RTTmin, the minimum possible round-trip time that the connection 
can experience. 

Now, suppose the RTT of the connection is equal to RTTmin. That is, there is no queue 
building up at the bottleneck link. Then, the throughput of the connection is W/RTT 
= W/RTTmin. We would like this throughput to be the bottleneck link rate, B. Setting 
W/RTTmin = B, we find that W should be equal to B · RTTmin. 

This quantity—B · RTTmin—is an important concept for sliding window protocols (all 
sliding window protocols, not just the one we have studied). It is called the bandwidth-

delay product of the connection and is a property of the bi-directional network path be­
tween sender and receiver. When the window size is strictly smaller than the bandwidth­
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delay product, the throughput will be strictly smaller than the bottleneck rate, B, and the 
queueing delay will be non-existent. In this phase, the connection’s throughput linearly 
increases as we increase the window size, W , assuming no other traffic intervenes. The 
smallest window size for which the throughput will be equal to B is the bandwidth-delay 
product. 

This discussion shows that for our sliding window protocol, setting W = B × RTTmin 

achieves the maximum possible throughput, B, in the absence of any data packet or ACK 
losses. When packet losses occur, the window size will need to be higher to get maximum 
throughput (utilization), because we need a sufficient number of unacknowledged data 
packets to keep a B × RTTmin worth of packets even when losses occur. A smaller win­
dow size will achieve sub-optimal throughput, linear in the window size, and inversely 
proportional to RTTmin. 

But once W exceeds B × RTTmin, the RTT experienced by the connection includes 
queueing as well, and the RTT will no longer be a constant independent of W ! That is, in­
creasing W will cause RTT to also increase, but the rate, B, will no longer increase. What 
is the throughput in this case? 

We can answer this question by applying Little’s law twice. Once at the bottleneck 
link’s queue, and once on the entire network path. We will show the intuitive result that if 
W > B  × RTTmin, then the throughput is B packets per second. 

First, let the average number of packets at the queue of the bottleneck link be Q. By  
Little’s law applied to this queue, we know that Q = B · τ , where B is the rate at which 
the queue drains (i.e., the bottleneck link rate), and τ is the average delay in the queue, so 
τ = Q/B. 

We also know that 
RTT = RTTmin + τ = RTTmin +Q/B. (19.5) 

Now, consider the window size, W , which is the number of unacknowledged packets. 
We know that all these packets, by conservation of packets, must either be in the bottleneck 
queue, or in the non-queueing part of the system. That is, 

W = Q +B · RTTmin. (19.6) 

Finally, from Little’s law applied to the entire bi-directional network path, 

W
Throughput = (19.7)

RTT 
B · RTTmin +Q 

= (19.8)
RTTmin + (Q/B) 

= B (19.9) 

Thus, we can conclude that, in the absence of any data packet or ACK losses, the con­
nection’s throughput is as shown schematically in Figure 19-8. 

Throughput of the sliding window protocol with packet losses 

Assuming that one sets the window size properly, i.e., to be large enough so that W ≥ 
B × RTTmin always, even in the presence of data or ACK losses, what is the maximum 
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Throughput of connecton 
(no data or ACK losses) 

Botleneck link rate 
B 

R8*RTTmin Window size, W 

Figure 19-8: Throughput of the sliding window protocol as a function of the window size in a network 

with no other traffic. The bottleneck link rate is B packets per second and the RTT without any queueing 

is RTTmin. The product of these two quantities is the bandwidth-delay product. 

throughput of our sliding window protocol if the network has a certain probability of 
packet loss? 

Consider a simple model in which the network path loses any packet—data or ACK— 
such that the probability of either a data packet being lost or its ACK being lost is equal to 
C, and the packet loss random process is independent and identically distributed (the same 
model as in our analysis of stop-and-wait). Then, the utilization achieved by our sliding 
window reliable transport protocol is at most 1 − C. Moreover, for a large-enough window 
size, W , our sliding window protocol comes close to achieving it. 

The reason for the upper bound on utilization is that in this protocol, a data packet is 
acknowledged only when the sender gets an ACK explicitly for that packet. Now consider 
the number of transmissions that any given data packet must incur before its ACK is re­
ceived by the sender. With probability 1 − C, we need one transmission, with probability 
C(1 − C), we need two transmissions, and so on, giving us an expected number of transmis­

1sions of . If we make this number of transmissions, one data packet is successfully sent 1−£ 
1and acknowledged. Hence, the utilization of the protocol can be at most 1 = 1  − C. In  

1−£ 

fact, it turns out the 1 − C is the capacity (i.e., upper-bound on throughput) for any channel 
(network path) with packet loss rate C. 

If the sender picks a window size sufficiently larger than the bandwidth-minimum-
RTT product, so that at least bandwidth-minimum-RTT packets are in transit (unacknowl­
edged) even in the face of data and ACK losses, then the protocol’s utilization will be close 
to the maximum value of 1 − C. 
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Is a good timeout important for the sliding window protocol? 

Given that our sliding window protocol always sends a data packet every time the sender 
gets an ACK, one might reasonably ask whether setting a good timeout value, which under 
even the best of conditions involves a hard trade-off, is essential. The answer turns out to 
be subtle: it’s true that the timeout can be quite large, because data packets will continue to 
flow as long as some ACKs are arriving. However, as data packets (or ACKs) get lost, the 
effective window size keeps falling, and eventually the protocol will stall until the sender 
retransmits. So one can’t ignore the task of picking a timeout altogether, but one can pick 
a more conservative (longer) timeout than in the stop-and-wait protocol. However, the 
longer the timeout, the bigger the stalls experienced by the receiver application—even 
though the receiver’s transport protocol would have received the data packets, they can’t 
be delivered to the application because it wants the data to be delivered in order. Therefore, 
a good timeout is still quite useful, and the principles discussed in setting it are widely 
useful. 

Secondly, we note that the longer the timeout, the bigger the receiver’s buffer has to be 
when there are losses; in fact, in the worst case, there is no bound on how big the receiver’s 
buffer can get. To see why, think about what happens if we were unlucky and a data packet 
with a particular sequence number kept getting lost, but everything else got through. 

The two factors mentioned above affect the throughput of the transport protocol, but 
the biggest consequence of a long timeout is the effect on the latency perceived by appli­
cations (and users). The reason is that data packets are delivered in-order by the protocol 
to the application, which means that a missing packet with sequence number k will cause 
the application to stall, even though data packets with sequence numbers larger than k 
have arrived and are in the transport protocol’s receiver buffer. Hence, an excessively long 
timeout hurts interactivity and degrades the user’s experience. 

• 19.6 Summary 

This chapter described the key concepts in the design on a reliable data transport proto­
col. The big idea is to use redundancy in the form of careful retransmissions, for which 
we developed the idea of using sequence numbers to uniquely identify data packets and 
acknowledgments for the receiver to signal the successful reception of a data packet to 
the sender. We discussed how the sender can set a good timeout, balancing between the 
ability to track a persistent change of the round-trip times against the ability to ignore non-
persistent glitches. The method to calculate the timeout involved estimating a smoothed 
mean and linear deviation using an exponential weighted moving average, which is a sin­
gle real-zero low-pass filter. The timeout itself is set at the mean + 4 times the deviation to 
ensure that the tail probability of a spurious retransmission is small. We used these ideas 
in developing the simple stop-and-wait protocol. 

We then developed the idea of a sliding window to improve performance, and showed 
how to modify the sender and receiver to use this concept. Both the sender and receiver are 
now more complicated than in the stop-and-wait protocol, but when there are no losses, 
one can set the window size to the bandwidth-delay product and achieve high throughput 
in this protocol. We also studied how increasing the window size increases the throughput 
linearly up to a point, after only the (queueing) delay increases, and not the throughput of 
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the connection. 
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• Problems and Questions 

1. Consider a best-effort network with variable delays and losses. In such a network, 
Louis Reasoner suggests that the receiver does not need to send the sequence number 
in the ACK in a correctly implemented stop-and-wait protocol, where the sender 
sends data packet k + 1  only after the ACK for data packet k is received. Explain 
whether he is correct or not. 

2. The 802.11 (WiFi) link-layer uses a stop-and-wait protocol to improve link reliability. 
The protocol works as follows: 

(a) The sender transmits data packet k + 1 to the receiver as soon as it receives an 
ACK for the data packet k. 

(b) After the receiver gets the entire data packet, it computes a checksum (CRC). 
The processing time to compute the CRC is Tp and you may assume that it does 
not depend on the packet size. 

(c) If the CRC is correct, the receiver sends a link-layer ACK to the sender.	 The 
ACK has negligible size and reaches the sender instantaneously. 

The sender and receiver are near each other, so you can ignore the propagation delay. 
The bit rate is R = 54 Megabits/s, the smallest data packet size is 540 bits, and the 
largest data packet size is 5,400 bits. 

What is the maximum processing time Tp that ensures that the protocol will achieve 
a throughput of at least 50% of the bit rate of the link in the absence of data packet 
and ACK losses, for any data packet size? 

3. Alyssa P. Hacker sets up a wireless network in her home to enable her computer 
(“client”) to communicate with an Access Point (AP). The client and AP communi­
cate with each other using a stop-and-wait protocol. 

The data packet size is 10000 bits. The total round-trip time (RTT) between the AP 
and client is equal to 0.2 milliseconds (that includes the time to process the packet, 
transmit an ACK, and process the ACK at the sender) plus the transmission time of 
the 10000 bit packet over the link. 

Alyssa can configure two possible transmission bit rates for her link, with the follow­
ing properties: 
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Bit rate Bi-directional packet loss probability RTT 

10 Megabits/s	 1/11 

20 Megabits/s	 1/4 

Alyssa’s goal is to select the bit rate that provides the higher throughput for a stream 
of packets that need to be delivered reliably between the AP and client using stop­
and-wait. For both bit rates, the retransmission timeout (RTO) is 2.4 milliseconds. 

(a) Calculate the round-trip time (RTT) for each bit rate? 

(b) For each bit rate, calculate the expected time, in milliseconds, to successfully 
deliver a packet and get an ACK for it. Show your work. 

(c) Using the above calculations, which bit rate would you choose to achieve 
Alyssa’s goal? 

4. Suppose the sender in a reliable transport protocol uses an EWMA filter to estimate 
the smoothed round trip time, srtt, every time it gets an ACK with an RTT sample r. 

srtt → α · r +(1 − α)· srtt 

We would like every data packet in a window to contribute a weight of at least 1% 
to the srtt calculation. As the window size increases, should α increase, decrease, or 
remain the same, to achieve this goal? (You should be able to answer this question 
without writing any equations.) 

5. TCP computes an average round-trip time (RTT) for the connection using an EWMA 
estimator, as in the previous problem. Suppose that at time 0, the initial estimate, 
srtt, is equal to the true value, r0. Suppose that immediately after this time, the RTT 
for the connection increases to a value R and remains at that value for the remainder 
of the connection. You may assume that R >> r0. 

Suppose that the TCP retransmission timeout value at step n, RT O(n), is set to β · srtt. 
Calculate the number of RTT samples before we can be sure that there will be no 
spurious retransmissions. Old TCP implementations used to have β = 2  and α = 
1/8. How many samples does this correspond to before spurious retransmissions 
are avoided, for this problem? (As explained in Section 19.3, TCP now uses the mean 
linear deviation as its RTO formula. Originally, TCP didn’t incorporate the linear 
deviation in its RTO formula.) 

6. Consider a sliding window protocol between a sender and a receiver.	 The receiver 
should deliver data packets reliably and in order to its application. 

The sender correctly maintains the following state variables: 
unacked pkts – the buffer of unacknowledged data packets 
first unacked – the lowest unacked sequence number (undefined if all data 

packets have been acked) 
last unacked – the highest unacked sequence number (undefined if all data 
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packets have been acked) 
last sent – the highest sequence number sent so far (whether acknowledged or 

not)
 

If the receiver gets a data packet that is strictly larger than the next one in sequence,
 
it adds the packet to a buffer if not already present. We want to ensure that the size
 
of this buffer of data packets awaiting delivery never exceeds a value W ≥ 0. Write
 
down the check(s) that the sender should perform before sending a new data packet
 
in terms of the variables mentioned above that ensure the desired property.
 

7. Alyssa P. Hacker measures that the network path between two computers has a 
round-trip time (RTT) of 100 milliseconds. The queueing delay is negligible. The 
rate of the bottleneck link between them is 1 Mbyte/s. Alyssa implements the re­
liable sliding window protocol studied in 6.02 and runs it between these two com­
puters. The data packet size is fixed at 1000 bytes (you can ignore the size of the 
acknowledgments). There is no other traffic. 

(a) Alyssa sets the window size to 10 data packets. What is the resulting maximum 
utilization of the bottleneck link? Explain your answer. 

(b) Alyssa’s implementation of a sliding window protocol uses an 8-bit field for 
the sequence number in each data packet. Assuming that the RTT remains the 
same, what is the smallest value of the bottleneck link bandwidth (in Mbytes/s) 
that will cause the protocol to stop working correctly when packet losses occur? 
Assume that the definition of a window in her protocol is the difference between 
the last transmitted sequence number and the last in-sequence ACK. 

(c) Suppose the window size is 10 data packets and that the value of the sender’s 
retransmission timeout is 1 second. A data packet gets lost before it reaches the 
receiver. The protocol continues and no other data packets or acks are lost. The  
receiver wants to deliver data to the application in order. 
What is the maximum size, in packets, that the buffer at the receiver can grow 
to in the sliding window protocol? Answer this question for the two different 
definitions of a “window” below. 

i. When the window is the maximum difference between the last transmitted 
data packet and the last in-sequence ACK received at the sender: 

ii. When the window is the maximum number of unacknowledged data pack­
ets at the sender: 

8. In the reliable transport protocols we studied, the receiver sends an acknowledgment 
(ACK) saying “I got k” whenever it receives a data packet with sequence number k. 
Ben Bitdiddle invents a different method using cumulative ACKs: whenever the 
receiver gets a data packet, whether in order or not, it sends an ACK saying “I got 
every data packet up to and including C”, where C is the highest, in-order data packet 
received so far. 

The definition of the window is the same as before: a window size of W means that 
the maximum number of unacknowledged data packets is W . Every time the sender 
gets an ACK, it may transmit one or more data packets, within the constraint of the 
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window size. It also implements a timeout mechanism to retransmit data packets 
that it believes are lost using the algorithm described in these notes. The protocol 
runs over a best-effort network, but no data packet or ACK is duplicated at the network 
or link layers. 

The sender sends a stream of new data packets according to the sliding window 
protocol, and in response gets the following cumulative ACKs from the receiver: 

1 2 3 4 4 4 4 4 4 4  

(a) Now, suppose that the sender times out and retransmits the first unacknowl­
edged data packet. When the receiver gets that retransmitted data packet, what 
can you say about the ACK, a, that it sends? 

i. a = 5. 
ii. a ≥ 5. 

iii. 5 ≤ a ≤ 11. 
iv. a = 11. 
v. a ≤ 11. 

(b) Assuming no ACKs were lost, what is the minimum window size that can pro­
duce the sequence of ACKs shown above? 

(c) Is it possible for the given sequence of cumulative ACKs to have arrived at the 
sender even when no data packets were lost en route to the receiver when they 
were sent? 

(d) A little bit into the data transfer, the sender observes the following sequence of 
cumulative ACKs sent from the receiver: 

21 22 23 25 28 

The window size is 8 packets. What data packet(s) should the sender transmit 
upon receiving each of the above ACKs, if it wants to maximize the number of 
unacknowledged data packets? 

On getting ACK # → Send ?? On getting ACK # → Send ?? 

21 → 22 → 
23 → 25 → 
28 → 

9. Give one example of a situation where the cumulative ACK protocol described in 
the previous problem gets higher throughput than the sliding window protocol de­
scribed in this chapter. 

10. A sender S and receiver R communicate reliably over a series of links using a sliding 
window protocol with some window size, W packets. The path between S and R 
has one bottleneck link (i.e., one link whose rate bounds the throughput that can be 
achieved), whose data rate is C packets/second. When the window size is W , the 
queue at the bottleneck link is always full, with Q data packets in it. The round trip 
time (RTT) of the connection between S and R during this data transfer with window 
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size W is T seconds, including the queueing delay. There are no data packet or ACK 
losses in this case, and there are no other connections sharing this path. 

(a) Write an expression for W in terms of the other parameters specified above. 

(b) We would like to reduce the window size from W and still achieve high uti­
lization. What is the minimum window size, Wmin, which will achieve 100% 
utilization of the bottleneck link? Express your answer as a function of C, T , 
and Q. 

(c) Now suppose the sender starts with a window size set to Wmin. If all these data 
packets get acknowledged and no packet losses occur in the window, the sender 
increases the window size by 1. The sender keeps increasing the window size 
in this fashion until it reaches a window size that causes a data packet loss to 
occur. What is the smallest window size at which the sender observes a data 
packet loss caused by the bottleneck queue overflowing? Assume that no ACKs 
are lost. 

11. Ben Bitdiddle decides to use the sliding window transport protocol described in 
these notes on the network shown in Figure 19-9. The receiver sends end-to-end 
ACKs to the sender. The switch in the middle simply forwards packets in best-effort 
fashion. 
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Figure 19-9: Ben’s network. 

(a) The sender’s window size is 10 packets. At what approximate rate (in packets 
per second) will the protocol deliver a multi-gigabyte file from the sender to the 
receiver? Assume that there is no other traffic in the network and packets can 
only be lost because the queues overflow. 

i. Between 900 and 1000. 
ii. Between 450 and 500. 

iii. Between 225 and 250. 
iv. Depends on the timeout value used. 
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(b) You would like to double the throughput of this sliding window transport pro­
tocol running on the network shown on the previous page. To do so, you can 
apply one of the following techniques alone: 

i. Double the window size. 
ii. Halve the propagation time of the links. 

iii. Double the rate of the link between the Switch and Receiver. 

For each of the following sender window sizes, list which of the above tech­
niques, if any, can approximately double the throughput. If no technique does 
the job, say “None”. There might be more than one answer for each window 
size, in which case you should list them all. Each technique works in isolation. 

1. W = 10: 
2. W = 50:
 
3. W = 30:
 

12. Eager B. Eaver starts MyFace, a next-generation social networking web site in which 
the only pictures allowed are users’ faces. MyFace has a simple request-response 
interface. The client sends a request (for a face), the server sends a response (the 
face). Both request and response fit in one packet (the faces in the responses are small 
pictures!). When the client gets a response, it immediately sends the next request. 
The size of the largest packet is S = 1000 bytes. 

Eager’s server is in Cambridge. Clients come from all over the world. Eager’s mea­
surements show that one can model the typical client as having a 100 millisecond 
round-trip time (RTT) to the server (i.e., the network component of the request-
response delay, not counting the additional processing time taken by the server, is 
100 milliseconds). 

If the client does not get a response from the server in a time τ , it resends the request. 
It keeps doing that until it gets a response. 

(a) Is the protocol described above “at least once”, “at most once”, or “exactly 
once”? 

(b) Eager needs to provision the link bandwidth for MyFace. He anticipates that at 
any given time, the largest number of clients making a request is 2000. What 
minimum outgoing link bandwidth from MyFace will ensure that the link con­
necting MyFace to the Internet will not experience congestion? 

(c) Suppose the probability of the client receiving a response from the server for 
any given request is p. What is the expected time for a client’s request to obtain 
a response from the server? Your answer will depend on p, RTT, and τ . 

13. Lem E. Tweetit is designing a new protocol for Tweeter, a Twitter rip-off. All tweets 
in Tweeter are 1000 bytes in length. Each tweet sent by a client and received by the 
Tweeter server is immediately acknowledged by the server; if the client does not 
receive an ACK within a timeout, it re-sends the tweets, and repeats this process 
until it gets an ACK. 
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Sir Tweetsalot uses a device whose data transmission rate is 100 Kbytes/s, which you 
can assume is the bottleneck rate between his client and the server. The round-trip 
propagation time between his client and the server is 10 milliseconds. Assume that 
there is no queueing on any link between client and server and that the processing 
time along the path is 0. You may also assume that the ACKs are very small in size, 
so consume neglible bandwidth and transmission time (of course, they still need to 
propagate from server to client). Do not ignore the transmission time of a tweet. 

(a) What is the smallest value of the timeout, in milliseconds, that will avoid spuri­
ous retransmissions? 

(b) Suppose that the timeout is set to 90 milliseconds. Unfortunately, the probability 
that a given client transmission gets an ACK is only 75%. What is the utilization 
of the network? 

14. A sender A and a receiver B communicate using the stop-and-wait protocol studied 
in this chapter. There are n links on the path between A and B, each with a data rate 
of R bits per second. The size of a data packet is S bits and the size of an ACK is K 
bits. Each link has a physical distance of D meters and the speed of signal propaga­
tion over each link is c meters per second. The total processing time experienced by a 
data packet and its ACK is Tp seconds. ACKs traverse the same links as data packets, 
except in the opposite direction on each link (the propagation time and data rate are 
the same in both directions of a link). There is no queueing delay in this network. 
Each link has a packet loss probability of p, with packets being lost independently. 

What are the following four quantities in terms of the parameters given? 

(a) Transmission	 time for a data packet on one link between A and B: 
. 

(b) Propagation	 time for a data packet across n links between A and B: 
. 

(c) Round-trip	 time (RTT) between A and B? 
. 

(The RTT is defined as the elapsed time between the start of transmission of a 
data packet and the completion of receipt of the ACK sent in response to the 
data packet’s reception by the receiver.) 

(d) Probability	 that a data packet sent by A will reach B: 
. 

15. Ben Bitdiddle gets rid of the timestamps from the packet header in this chapter’s 
stop-and-wait transport protocol running over a best-effort network. The network 
may lose or reorder packets, but it never duplicates a packet. In the protocol, the 
receiver sends an ACK for each data packet it receives, echoing the sequence number 
of the packet that was just received. 

The sender uses the following method to estimate the round-trip time (RTT) of the 
connection: 
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1. When the sender transmits a packet with sequence number k, it stores the time 
on its machine at which the packet was sent, tk. If the transmission is a retrans­
mission of sequence number k, then tk is updated. 

2. When the sender gets an ACK for packet k, if it has not already gotten an ACK 
for k so far, it observes the current time on its machine, ak, and measures the 
RTT sample as ak − tk. 

If the ACK received by the sender at time ak was sent by the receiver in response 
to a data packet sent at time tk, then the RTT sample ak − tk is said to be correct. 
Otherwise, it is incorrect. 

State True or False for the following statements, with an explanation for your choice. 

(a) If the sender never retransmits a data packet during a data transfer, then all the 
RTT samples produced by Ben’s method are correct. 

(b) If data and ACK packets are never reordered in the network, then all the RTT 
samples produced by Ben’s method are correct. 

(c) If the sender makes no spurious retransmissions during a data transfer (i.e., it 
only retransmits a data packet if all previous transmissions of data packets with 
the same sequence number did in fact get dropped before reaching the receiver), 
then all the RTT samples produced by Ben’s method are correct. 

16. Opt E. Miser implements this chapter’s stop-and-wait reliable transport protocol 
with one modification: being stingy, he replaces the sequence number field with a 
1-bit field, deciding to reuse sequence numbers across data packets. The first data 
packet has sequence number 1, the second has number 0, the third has number 1, the 
fourth has number 0, and so on. Whenever the receiver gets a packet with sequence 
number s(= 0 or 1), it sends an ACK to the sender echoing s. The receiver delivers a 
data packet to the application if, and only if, its sequence number is different from the 
last one delivered, and upon delivery, updates the last sequence number delivered. 

He runs this protocol over a best-effort network that can lose packets (with prob­
ability < 1) or reorder them, and whose delays are variable. Explain whether the 
modified protocol always provides reliable, in-order delivery of a stream of packets. 

17. Consider a reliable transport connection using this chapter’s sliding window proto­
col on a network path whose RTT in the absence of queueing is RTTmin = 0.1 seconds. 
The connection’s bottleneck link has a rate of C = 100 packets per second, and the 
queue in front of the bottleneck link has space for Q = 20  packets. 

Assume that the sender uses a sliding window protocol with fixed window size. 
There is no other traffic on the path. 

(a) If the window size is 8 packets, then what is the throughput of the connection? 

(b) If the window size is 16 packets, then what is the throughput of the connection? 

(c) What is the smallest window size for which the connection’s RTT exceeds 
RTTmin? 
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(d) What is the largest value of the sender window size for which no packets are 
lost due to a queue overflow? 

18. Annette Werker correctly implements the fixed-size sliding window protocol de­
scribed in this chapter. She instruments the sender to store the time at which each 
DATA packet is sent and the time at which each ACK is received. A snippet of the 
DATA and ACK traces from an experiment is shown in the picture below. Each + is 
a DATA packet transmission, with the x-axis showing the transmission time and the 
y-axis showing the sequence number. Each × is an ACK reception, with the x-axis 
showing the ACK reception time and the y-axis showing the ACK sequence number. 
All DATA packets have the same size.
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Answer the following questions, providing a brief explanation for each one. 

(a) Estimate any one sample round-trip time (RTT) of the connection. 

(b) Estimate the sender’s retransmission timeout (RTO) for this trace. 

(c) On the picture, circle DATA packet retransmissions for four different sequence 
numbers. 

(d) Some DATA packets in this trace may have incurred more than one retransmis­
sion? On the picture, draw a square around one such retransmission. 

(e) What is your best estimate of the sender’s window size? 

(f) What is your best estimate of the throughput in packets per second of the con­
nection? 



332 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS 

(g) Considering only sequence numbers > 880, what is your best estimate of the 
packet loss rate experienced by DATA packets? 

19. Consider the same setup as the previous problem. Suppose the window size for the 
connection is equal to twice the bandwidth-delay product of the network path. 

For each change to the parameters of the network path or the sender given below, 
explain if the connection’s throughput (not utilization) will increase, decrease, or 
remain the same. In each statement, nothing other than what is specified in that 
statement changes. 

(a) The packet loss rate, C, decreases to C/3. 

(b) The minimum value of the RTT, R, increases to 1.8R. 

(c) The window size, W , decreases to W/3. 

20. Annette Werker conducts tests between a server and a client using the sliding win­
dow protocol described in this chapter. There is no other traffic on the path and no 
packet loss. Annette finds that: 

• With a window size W1 = 50  packets, the throughput is 200 packets per second. 

• With a window size W2 = 100 packets, the throughput is 250 packets per second. 

Annette finds that even this small amount of information allows her to calculate 
several things, assuming there is only one bottleneck link. Calculate the following: 

(a) The minimum round-trip time between the client and server. 

(b) The average queueing delay at the bottleneck when the window size is 100 
packets. 

(c) The average queue size when the window size is 100 packets. 



MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



