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CHAPTER 18 
Network Routing - II 

Routing Around Failures 

This chapter describes the mechanisms used by distributed routing protocols to handle 
link and node failures, packet losses (which may cause advertisements to be lost), changes 
in link costs, and (as in the previous chapter) new nodes and links being added to the 
network. We will use the term churn to refer to any changes in the network topology. Our 
goal is to find the best paths in the face of churn. Of particular interest will be the ability to 
route around failures, finding the minimum-cost working paths between any two nodes 
from among the set of available paths. 

We start by discussing what it means for a routing protocol to be correct, and define our 
correctness goal in the face of churn. The first step to solving the problem is to discover 
failures. In routing protocols, each node is responsible for discovering which of its links 
and corresponding nodes are still working; most routing protocols use a simple HELLO 
protocol for this task. Then, to handle failures, each node runs the advertisement and integra­
tion steps periodically. The idea is for each node to repeatedly propagate what it knows 
about the network topology to its neighbors so that any changes are propagated to all the 
nodes in the network. These periodic messages are the key mechanism used by routing 
protocols to cope with changes in the network. Of course, the routing protocol has to be 
robust to packet losses that cause various messages to be lost; for example, one can’t use 
the absence of a single message to assume that a link or node has failed, for packet losses 
are usually far more common than actual failures. 

We will see that the distributed computation done in the distance-vector protocol in­
teracts adversely with the periodic advertisements and causes the routing protocol to not 
produce correct routing tables in the face of certain kinds of failures. We will present and 
analyze a few different solutions that overcome these adverse interactions, which extend 
our distance-vector protocol. We also discuss some circumstances under which link-state 
protocols don’t work correctly. We conclude this chapter by comparing link-state and dis­
tance vector protocols. 
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• 18.1 Correctness and Convergence 

In an ideal, correctly working routing protocol, two properties hold: 

1. For any node, if the node has a route to a given destination, then there will be a 
usable path in the network topology from the node to the destination that traverses 
the link named in the route. We call this property route validity. 

2. In addition, each node will have a route to each destination for which there is a 
usable path in the network topology, and any packet forwarded along the sequence 
of these routes will reach the destination (note that a route is the outgoing link at 
each switch; the sequence of routes corresponds to a path). We call this property path 
visibility because it is a statement of how visible the usable paths are to the switches 
in the network. 

If these two properties hold in a network, then the network’s routing protocol is said to 
have converged. It is impossible to guarantee that these properties hold at all times because 
it takes a non-zero amount of time for any change to propagate through the network to all 
nodes, and for all the nodes to come to some consensus on the state of the network. Hence, 
we will settle for a less ambitious—though still challenging—goal, eventual convergence. 
We define eventual convergence as follows: Given an arbitrary initial state of the network 
and the routing tables at time t = 0, suppose some sequence of failure and recovery events 
and other changes to the topology occur over some duration of time, τ . After t = τ , sup­
pose that no changes occur to the network topology, also that no route advertisements or 
HELLO messages are lost. Then, if the routing protocol ensures that route validity and path 
visibility hold in the network after some finite amount of time following t = τ , then the protocol is 
said to “eventually converge”. 

In practice, it is quite possible, and indeed likely, that there will be no time τ after 
which there are no changes or packet losses, but even in these cases, eventual convergence 
is a valuable property of a routing protocol because it shows that the protocol is working 
toward ensuring that the routing tables are all correct. The time taken for the protocol to 
converge after a sequence of changes have occurred (or from some initial state) is called 
the convergence time. Thus, even though churn in real networks is possible at any time, 
eventual convergence is still a valuable goal. 

During the time it takes for the protocol to converge, a number of things could go 
wrong: routing loops and reduced path visibility are two significant problems. 

• 18.1.1 Routing Loops 

Suppose the nodes in a network each want a route to some destination D. If the routes 
they have for D take them on a path with a sequence of nodes that form a cycle, then the 
network has a routing loop. That is, if the path resulting from the routes at each successive 
node forms a sequence of two or more nodes n1, n2, . . . , nk in which ni = nj for some 
i �= j, then we have a routing loop. A routing loop violates the route validity correctness 
condition. If a routing loop occurs, packets sent along this path to D will be stuck in 
the network forever, unless other mechanisms are put in place (while packets are being 
forwarded) to “flush” such packets from the network (see Section 18.2). 
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• 18.1.2 Reduced Path Visibility 

This problem usually arises when a failed link or node recovers after a failure and a pre­
viously unreachable part of the network now becomes reachable via that link or node. 
Because it takes time for the protocol to converge, it takes time for this information to 
propagate through the network and for all the nodes to correctly compute paths to nodes 
on the “other side” of the network. During that time, the routing tables have not yet con­
verged, so as far as data packets are concerned, the previously unreachable part of the 
network still remains that way. 

• 18.2 Alleviating Routing Loops: Hop Limits on Packets 

If a packet is sent along a sequence of routers that are part of a routing loop, the packet 
will remain in the network until the routing loop is eliminated. The typical time scales over 
which routing protocols converge could be many seconds or even a few minutes, during 
which these packets may consume significant amounts of network bandwidth and reduce 
the capacity available to other packets that can be sent successfully to other destinations. 

To mitigate this (hopefully transient) problem, it is customary for the packet header to 
include a hop limit. The source sets the “hop limit” field in the packet’s header to some 
value larger than the number of hops it believes is needed to get to the destination. Each 
switch, before forwarding the packet, decrements the hop limit field by 1. If this field reaches 
0, then it does not forward the packet, but drops it instead (optionally, the switch may send 
a diagnostic packet toward the source telling it that the switch dropped the packet because 
the hop limit was exceeded). 

The forwarding process needs to make sure that if a checksum covers the hop limit 
field, then the checksum needs to be adjusted to reflect the decrement done to the hop-
limit field.1 

Combining this information with the rest of the forwarding steps discussed in the pre­
vious chapter, we can summarize the basic steps done while forwarding a packet in a 
best-effort network as follows: 

1. Check the hop-limit field. If it is 0, discard the packet. Optionally, send a diagnos­
tic packet toward the packet’s source saying “hop limit exceeded”; in response, the 
source may decide to stop sending packets to that destination for some period of 
time. 

2. If the hop-limit is larger than 0, then perform a routing table lookup using the des­
tination address to determine the route for the packet. If no link is returned by the 
lookup or if the link is considered “not working” by the switch, then discard the 
packet. Otherwise, if the destination is the present node, then deliver the packet to 
the appropriate protocol or application running on the node. Otherwise, proceed to 
the next step. 

3. Decrement the hop-limit by 1. Adjust the checksum (typically the header checksum) 
if necessary. Enqueue the packet in the queue corresponding to the outgoing link 

1IP version 4 has such a header checksum, but IP version 6 dispenses with it, because higher-layer protocols 
used to provide reliable delivery have a checksum that covers portions of the IP header. 
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returned by the route lookup procedure. When this packet reaches the head of the 
queue, the switch will send the packet on the link. 

• 18.3 Neighbor Liveness: HELLO Protocol 

As mentioned in the previous chapter, determining which of a node’s neighbors is cur­
rently alive and working is the first step in any routing protocol. We now address this 
question: how does a node determine its current set of neighbors? The HELLO protocol 
solves this problem. 

The HELLO protocol is simple and is named for the kind of message it uses. Each 
node sends a HELLO packet along all its links periodically. The purpose of the HELLO is 
to let the nodes at the other end of the links know that the sending node is still alive. As 
long as the link is working, these packets will reach. As long as a node hears another’s 
HELLO, it presumes that the sending node is still operating correctly. The messages are 
periodic because failures could occur at any time, so we need to monitor our neighbors 
continuously. 

When should a node remove a node at the other end of a link from its list of neighbors? 
If we knew how often the HELLO messages were being sent, then we could wait for a cer­
tain amount of time, and remove the node if we don’t hear even one HELLO packet from it 
in that time. Of course, because packet losses could prevent a HELLO packet from reach­
ing, the absence of just one (or even a small number) of HELLO packets may not be a sign 
that the link or node has failed. Hence, it is best to wait for enough time before deciding 
that a node whose HELLO packets we haven’t heard should no longer be a neighbor. 

For this approach to work, HELLO packets must be sent at some regularity, such that 
the expected number of HELLO packets within the chosen timeout is more or less the 
same. We call the mean time between HELLO packet transmissions the HELLO INTERVAL. 
In practice, the actual time between these transmissions has small variance; for instance, 
one might pick a time drawn randomly from [HELLO INTERVAL - δ, HELLO INTERVAL + 
δ], where δ < HELLO INTERVAL. 

When a node doesn’t hear a HELLO packet from a node at the other end of a direct link 
for some duration, k· HELLO INTERVAL, it removes that node from its list of neighbors 
and considers that link “failed” (the node could have failed, or the link could just be expe­
rienced high packet loss, but we assume that it is unusable until we start hearing HELLO 
packets once more). 

The choice of k is a trade-off between the time it takes to determine a failed link and the 
odds of falsely flagging a working link as “failed” by confusing packet loss for a failure (of 
course, persistent packet losses that last a long period of time should indeed be considered 
a link failure, but the risk here in picking a small k is that if that many successive HELLO 
packets are lost, we will consider the link to have failed). In practice, designers pick k 
by evaluating the latency before detecting a failure (k· HELLO INTERVAL) with the prob­
ability of falsely flagging a link as failed. This probability is gk, where g is the packet loss 
probability on the link, assuming—and this is a big assumption in some networks—that 
packet losses are independent and identically distributed. 



291 SECTION 18.4. PERIODIC ADVERTISEMENTS 

• 18.4 Periodic Advertisements 

The key idea that allows routing protocols to adapt to dynamic network conditions is pe­

riodic routing advertisements and the integration step that follows each such advertise­
ment. This method applies to both distance-vector and link-state protocols. Each node 
sends an advertisement every ADVERT INTERVAL seconds to its neighbors. In response, 
in a distance-vector protocol, each receiving node runs the integration step; in the link-
state protocol each receiving node rebroadcasts the advertisement to its neighbors if it has 
not done so already for this advertisement. Then, every ADVERT INTERVAL seconds, off­
set from the time of its own advertisement by ADVERT INTERVAL/2 seconds, each node 
in the link-state protocol runs its integration step. That is, if a node sends its advertise­
ments at times t1, t2, t3, . . ., where the mean value of ti+1 − ti =ADVERT INTERVAL, then 
the integration step runs at times (t1 + t2)/2, (t2 + t3)/2, . . .. Note that one could imple­
ment a distance-vector protocol by running the integration step at such offsets, but we 
don’t need to because the integration in that protocol is easy to run incrementally as soon 
as an advertisement arrives. 

It is important to note that in practice the advertisements at the different nodes are 
unsynchronized. That is, each node has its own sequence of times at which it will send its 
advertisements. In a link-state protocol, this means that in general the time at which a 
node rebroadcasts an advertisement it hears from a neighbor (which originated at either 
the neighbor or some other node) is not the same as the time at which it originates its own 
advertisement. Similarly, in a distance-vector protocol, each node sends its advertisement 
asynchronously relative to every other node, and integrates advertisements coming from 
neighbors asynchronously as well. 

• 18.5 Link-State Protocol Under Failure and Churn 

We now argue that a link-state protocol will eventually converge (with high probability) 
given an arbitrary initial state at t = 0  and a sequence of changes to the topology that all 
occur within time (0, τ), assuming that each working link has a “high enough” probability 
of delivering a packet. To see why, observe that: 

1. There exists some finite time t1 > τ  at which each node will correctly know, with 
high probability, which of its links and corresponding neighboring nodes are up and 
which have failed. Because we have assumed that there are no changes after τ and 
that all packets are delivered with high-enough probability, the HELLO protocol run­
ning at each node will correctly enable the neighbors to infer its liveness. The arrival 
of the first HELLO packet from a neighbor will provide evidence for liveness, and if 
the delivery probability is high enough that the chances of k successive HELLO pack­
ets to be lost before the correct link state propagates to all the nodes in the network 
is small, then such a time t1 exists. 

2. There exists some finite time t2 > t1 at which all the nodes have received, with high 
probability, at least one copy of every other node’s link-state advertisement. Once 
a node has its own correct link state, it takes a time proportional to the diameter of 
the network (the number of hops in the longest shortest-path in the network) for that 
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Figure 18-1: Distance-vector protocol showing the “count-to-infinity” problem (see Section 18.6 for the 

explanation). 

advertisement to propagate to all the other nodes, assuming no packet loss. If there 
are losses, then notice that each node receives as many copies of the advertisement 
as there are neighbors, because each neighbor sends the advertisement once along 
each of its links. This flooding mechanism provides a built-in reliability at the cost of 
increased bandwidth consumption. Even if a node does not get another node’s LSA, 
it will eventually get some LSA from that node given enough time, because the links 
have a high-enough packet delivery probability. 

3. At a time roughly ADVERT INTERVAL/2 after receiving every other node’s correct 
link-state, a node will compute the correct routing table. 

Thus, one can see that under good packet delivery conditions, a link-state protocol can 
converge to the correct routing state as soon as each node has advertised its own link-
state advertisement, and each advertisement is received at least once by every other node. 
Thus, starting from some initial state, because each node sends an advertisement within 
time ADVERT INTERVAL on average, the convergence time is expected to be at least this 
amount. We should also add a time of roughly ADVERT INTERVAL/2 seconds to this quan­
tity to account for the delay before the node actually computes the routing table. This time 
could be higher, if the routes are recomputed less often on average, or lower, if they are 
recomputed more often. 

Ignoring when a node recomputes its routes, we can say that if each node gets at least 
one copy of each link-state advertisement, then the expected convergence time of the 
protocol is one advertisement interval plus the amount of time it takes for an LSA message 
to traverse the diameter of the network. Because the advertisement interval is many orders 
of magnitude larger than the message propagation time, the first term is dominant. 

Link-state protocols are not free from routing loops, however, because packet losses 
could cause problems. For example, if a node A discovers that one of its links has failed, it 
may recompute a route to a destination via some other neighboring node, B. If  B does not 
receive a copy of A’s LSA, and if B were using the link to A as its route to the destination, 
then a routing loop would ensue, at least until the point when B learned about the failed 
link. 

In general, link-state protocols are a good way to achieve fast convergence. 

• 18.6 Distance-Vector Protocol Under Failure and Churn 

Unlike in the link-state protocol where the flooding was distributed but the route computa­
tion was centralized at each node, the distance-vector protocol distributes the computation 
too. As a result, its convergence properties are far more subtle. 
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Consider for instance a simple “chain” topology with three nodes, A, B, and destination 
D (Figure 18-1). Suppose that the routing tables are all correct at t = 0 and then that link 
between B and D fails at some time t < τ . After this event, there are no further changes to 
the topology. 

Ideally, one would like the protocol to do the following. First, B’s HELLO protocol 
discovers the failure, and in its next routing advertisement, sends a cost of INFINITY (i.e., 
“unreachable”) to A. In response, A would conclude that B no longer had a route to D, and 
remove its own route to D from its routing table. The protocol will then have converged, 
and the time taken for convergence not that different from the link-state case (proportional 
to the diameter of the network in general). 

Unfortunately, things aren’t so clear cut because each node in the distance-vector pro­
tocol advertises information about all destinations, not just those directly connected to it. 
What could easily have happened was that before B sent its advertisment telling A that 
the cost to D had become INFINITY, A’s advertisement could have reached B telling B 
that the cost to D is 2. In response, B integrates this route into its routing table because 2 
is smaller than B’s own cost, which is INFINITY. You can now see the problem—B has a 
wrong route because it thinks A has a way of reaching D with cost 2, but it doesn’t really 
know that A’s route is based on what B had previously told him! So, now A thinks it has 
a route with cost 2 of reaching D and B thinks it has a route with cost 2 + 1 = 3. The next 
advertisement from B will cause A to increase its own cost to 3 + 1 = 4. Subsequently, 
after getting A’s advertisement, B will increase its cost to 5, and so on. In fact, this mess 
will continue, with both nodes believing that there is some way to get to the destination 
D, even though there is no path in the network (i.e., the route validity property does not 
hold here). 

There is a colorful name for this behavior: counting to infinity. The only way in which 
each node will realize that D is unreachable is for the cost to reach INFINITY. Thus, for 
this distance-vector protocol to converge in reasonable time, the value of INFINITY must 
be quite small! And, of course, INFINITY must be at least as large as the cost of the longest 
usable path in the network, for otherwise that routes corresponding to that path will not 
be found at all. 

We have a problem. The distance-vector protocol was attractive because it consumed far 
less bandwidth than the link-state protocol, and so we thought it would be more appopri­
ate for large networks, but now we find that INFINITY (and hence the size of networks for 
which the protocol is a good match) must be quite small! Is there a way out of this mess? 

First, let’s consider a flawed solution. Instead of B waiting for its normal advertisment 
time (every ADVERT INTERVAL seconds on average), what if B sent news of any unreach­
able destination(s) as soon as its integration step concludes that a link has failed and some 
destination(s) has cost INFINITY? If each node propagated this “bad news” fast in its ad­
vertisement, then perhaps the problem will disappear. 

Unfortunately, this approach does not work because advertisement packets could easily 
be lost. In our simple example, even if B sent an advertisement immediately after discov­
ering the failure of its link to D, that message could easily get dropped and not reach A. 
In this case, we’re back to square one, with B getting A’s advertisement with cost 2, and 
so on. Clearly, we need a more robust solution. We consider two, in turn, each with fancy 
names: split horizon routing and path vector routing. Both generalize the distance-vector 
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Figure 18-2: Split horizon (with or without poison reverse) doesn’t prevent routing loops of three or more 

hops. The dashed arrows show the routing advertisements for destination D. If link BD fails, as explained 

in the text, it is possible for a “count-to-infinity” routing loop involving A, B, and C to ensue. 

protocol in elegant ways. 

• 18.7 Distance Vector with Split Horizon Routing 

The idea in the split horizon extension to distance-vector routing is simple: 

If a node A learns about the best route to a destination D from neighbor B, then A will 
not advertise its route for D back to B. 

In fact, one can further ensure that B will not use the route advertised by A by having 
A advertise a route to D with a cost of INFINITY. This modification is called a poison reverse, 
because the node (A) is poisoning its route for D in its advertisement to B. 

It is easy to see that the two-node routing loop that showed up earlier disappears with 
the split horizon technique. 

Unfortunately, this method does not solve the problem more generally; loops of three 
or more hops can persist. To see why, look at the topology in Figure 18-2. Here, B is 
connected to destination D, and two other nodes A and C are connected to B as well as 
to each other. Each node has the following correct routing state at t = 0: A thinks D is at 
cost 2 (and via B), B thinks D is at cost 1 via the direct link, and C thinks D is at cost S 
(and via B). Each node uses the distance-vector protocol with the split horizon technique 
(it doesn’t matter whether they use poison reverse or not), so A and C advertise to B that 
their route to D has cost INFINITY. Of course, they also advertise to each other that there 
is a route to D with cost 2; this advertisement is useful if link AB (or BC) were to fail, 
because A could then use the route via C to get to D (or C could use the route via A). 

Now, suppose the link BD fails at some time t < τ . Ideally, if B discovers the failure 
and sends a cost of INFINITY to A and C in its next update, all the nodes will have the 
correct cost to D, and there is no routing loop. Because of the split horizon scheme, B 
does not have to send its advertisement immediately upon detecting the failed link, but 
the sooner it does, the better, for that will enable A and C to converge sooner. 



 

 

 

295 SECTION 18.8. PATH-VECTOR ROUTING 

A 

B 

C 

D 

E 

l1 

l2 

l1 
l2 

l1 
l2l1 

l2 

l1 l3 

l2 

l3 

E: 'Self' 

.To reach E, come this way" 
path = [E] 

.To reach E, come this way" 
path = [E] 

[CE] 

E: l2; cost=2; path=[DE] 

E: l1; cost=2; path=[CE] 

E: l2; cost=1; path=[E] 

E: l1; cost=1; path=[E] 

[DE] 

[CE] 

[CE] 

[DE] 

[ACE] 
[BDE] 

[ACE] 

[BDE] 

[DE] 

Figure 18-3: Path vector protocol example. 

However, suppose B’s routing advertisement with the updated cost to D (of INFINITY) 
reaches A, but is lost and doesn’t show up at C. A now knows that there is no route of finite 
cost to D, but C doesn’t. Now, in its next advertisement, C will advertise a route to D of 
cost 2 to A (and a cost of INFINITY to B because of poison reverse). In response, A will 
assume that C has found a better route than what A has (which is a “null” route with cost 
INFINITY), and integrate that into its table. In its next advertisement, A will advertise to 
B that it has a route of cost 3 to destination D, and B will incorporate that route at cost 4! 
It is easy to see now that when B advertises this route to C, it will cause C to increase its 
cost to 5, and so on. The count-to-infinity problem has shown up again! 

Path vector routing is a good solution to this problem. 

• 18.8 Path-Vector Routing 

The insight behind the path vector protocol is that a node needs to know when it is safe 
and correct to integrate any given advertisement into its routing table. The split horizon 
technique was an attempt that worked in only a limited way because it didn’t prevent 
loops longer than two hops. The path vector technique extends the distance vector adver­
tisement to include not only the cost, but also the nodes along the best path from the node to the 
destination. It looks like this: 

[dest1 cost1 path1 dest2 cost2 path2 dest3 cost3 path3 ...] 

Here, each “path” is the concatenation of the identifiers of the node along the path, with 
the destination showing up at the end (the opposite convention is equivalent, as long as 
all nodes treat the path consistently). Figure 18-3 shows an example. 

The integration step at node n should now be extended to only consider an advertise­
ment as long as n does not already appear on the advertised path. With that step, the rest 
of the integration step of the distance vector protocol can be used unchanged. 

Given an initial state at t = 0  and a set of changes in (0, τ), and assuming that each 
link has a high-enough packet delivery probability, this path vector protocol eventually 
converges (with high probability) to the correct state without “counting to infinity”. The 
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time it takes to converge when each node is interested in finding the minimum-cost path 
is proportional to the length of the longest minimum-cost path multiplied by the adver­
tisement interval. The reason is as follows. Initially, each node knows nothing about the 
network. After one advertisement interval, it learns about its neighbors routing tables, but 
at this stage those tables have nothing other than the nodes themselves. Then, after the 
next advertisement, each node learns about all nodes two hops away and how to reach 
them. Eventually, after k advertisements, each node learns about how to reach all nodes k 
hops away, assuming of course that no packet losses occur. Hence, it takes d advertisement 
intervals before a node discovers routes to all the other nodes, where d is the length of the 
longest minimum-cost path from the node. 

Compared to the distance vector protocol, the path vector protocol consumes more net­
work bandwidth because now each node needs to send not just the cost to the destination, 
but also the addresses (or identifiers) of the nodes along the best path. In most large real-
world networks, the number of links is large compared to the number of nodes, and the 
length of the minimum-cost paths grows slowly with the number of nodes (typically log­
arithmically). Thus, for large network, a path vector protocol is a reasonable choice. 

We are now in a position to compare the link-state protocol with the two vector proto­
cols (distance-vector and path-vector). 

• 18.9 Summary: Comparing Link-State and Vector Protocols 

There is nothing either good or bad, but thinking makes it so. 
—Hamlet, Act II (scene ii) 

Bandwidth consumption. The total number of bytes sent in each link-state advertise­
ment is quadratic in the number of links, while it is linear in the number of links for the 
distance-vector protocol. 

The advertisement step in the simple distance-vector protocol consumes less band­
width than in the simple link-state protocol. Suppose that there are n nodes and m links 
in the network, and that each [node pathcost] or [neighbor linkcost] tuple in an advertise­
ment takes up k bytes (k might be 6 in practice). Each advertisement also contains a source 
address, which (for simplicity) we will ignore. 

Then, for distance-vector, each node’s advertisement has size kn. Each such adver­
tisement shows up on every link twice, because each node advertises its best path cost to 
every destination on each of its link. Hence, the total bandwidth consumed is roughly 
2knm/ADVERT INTERVAL bytes/second. 

The calculation for link-state is a bit more involved. The easy part is to observe that 
there’s a “origin address” and sequence number of each LSA to improve the efficiency 
of the flooding process, which isn’t needed in distance-vector. If the sequence number 
is g bytes in size, then because each node broadcasts every other node’s LSA once, the 
number of bytes sent is gn. However, this is a second-order effect; most of the bandwidth 
is consumed by the rest of the LSA. The rest of the LSA consists of k bytes of information per 
neighbor. Across the entire network, this quantity accounts for k(2m) bytes of information, 
because the sum of the number of neighbors of each node in the network is 2m. Moreover, 
each LSA is re-broadcast once by each node, which means that each LSA shows up twice 
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on every link. Therefore, the total number of bytes consumed in flooding the LSAs over 
the network to all the nodes is k(2m)(2m) = 4km2. Putting it together with the bandwidth 
consumed by the sequence number field, we find that the total bandwidth consumed is 
(4km2 + 2gmn)/ADVERT INTERVAL bytes/second. 

It is easy to see that there is no connected network in which the bandwidth consumed 
by the simple link-state protocol is lower than the simple distance-vector protocol; the 
important point is that the former is quadratic in the number of links, while the latter 
depends on the product of the number of nodes and number of links. 

Convergence time. The convergence time of our distance vector and path vector proto­
cols can be as large as the length of the longest minimum-cost path in the network mul­
tiplied by the advertisement interval. The convergence time of our link-state protocol is 
roughly one advertisement interval. 

Robustness to misconfiguration. In a vector protocol, each node advertises costs and/or 
paths to all destinations. As such, an error or misconfiguration can cause a node to wrongly 
advertise a good route to a destination that the node does not actually have a good route 
for. In the worst case, it can cause all the traffic being sent to that destination to be hijacked 
and possibly “black holed” (i.e., not reach the intended destination). This kind of problem 
has been observed on the Internet from time to time. In contrast, the link-state protocol 
only advertises each node’s immediate links. Of course, each node also re-broadcasts the 
advertisements, but it is harder for any given erroneous node to wreak the same kind of 
havoc that a small error or misconfiguration in a vector protocol can. 

In practice, link-state protocols are used in smaller networks typically within a single 
company (enterprise) network. The routing between different autonomously operating 
networks in the Internet uses a path vector protocol. Variants of distance vector protocols 
that guarantee loop-freedom are used in some small networks, including some wireless 
“mesh” networks built out of short-range (WiFi) radios. 
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• Problems and Questions 

1. Why does the link-state advertisement include a sequence number? 

2. What is the purpose of the hop limit field in packet headers? Is that field used in 
routing or in forwarding? 

3. Describe clearly why the convergence time of our distance vector protocol can be as 
large as the length of the longest minimum-cost path in the network. 

4. Suppose a link connecting two nodes in a network drops packets independently with 
probability 10%. If we want to detect a link failure with a probability of falsely re­
porting a failure of ≤ 0.1%, and the HELLO messages are sent once every 10 seconds, 
then how much time does it take to determine that a link has failed? 

5. You’ve set up a 6-node connected network topology in your home, with nodes 
named A,B, . . . ,F . Inspecting A’s routing table, you find that some entries have 
been mysteriously erased (shown with “?” below), but you find the following en­
tries: 

Destination Cost Next-hop 
B 3 C 
C 2 ? 
D 4 E 
E 2 ? 
F 1 ? 

Each link has a cost of either 1 or 2 and link costs are symmetric (the cost from X 
to Y is the same as the cost from Y to X). The routing table entries correspond to 
minimum-cost routes. 

(a) Draw a network topology with the smallest number of links that is consistent with 
the routing table entries shown above and the cost information provided. Label 
each node and show each link cost clearly. 

(b) You know that there could be other links in the topology. To find out, you now 
go and inspect D’s routing table, but it is mysteriously empty. What is the small­
est possible value for the cost of the path from D to F in your home network 
topology? (Assume that any two nodes may possibly be directly connected to 
answer this question.) 

6. A network with N nodes and N bi-directional links is connected in a ring as shown 
in Figure 18-4, where N is an even number. The network runs a distance-vector 
protocol in which the advertisement step at each node runs when the local time is 

TT ∗ i seconds and the integration step runs when the local time is T ∗ i+ seconds,2 
(i = 1,2, . . .). Each advertisement takes time δ to reach a neighbor. Each node has a 
separate clock and time is not synchronized between the different nodes. 

Suppose that at some time t after the routing has converged, node N + 1 is inserted 
into the ring, as shown in the figure above. Assume that there are no other changes 
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Figure 18-4: The ring network with N nodes (N is even). 

in the network topology and no packet losses. Also assume that nodes 1 and N 
update their routing tables at time t to include node N + 1, and then rely on their 
next scheduled advertisements to propagate this new information. 

(a) What is the minimum time before every node in the network has a route to node 
N + 1? 

(b) What is the maximum time before every node in the network has a route to 
node N + 1? 

7. Alyssa P. Hacker manages MIT’s internal network that runs link-state routing. She 
wants to experiment with a few possible routing strategies. Listed below are the 
names of four strategies and a brief description of what each one does. 

(a) MinCost: Every node picks the path that has the smallest sum of link costs along 
the path. (This is the minimum cost routing you implemented in the lab). 

(b) MinHop: Every node picks the path with the smallest number of hops (irrespec­
tive of what the cost on the links is). 

(c) SecondMinCost: Every node picks the path with the second lowest sum of link 
costs. That is, every node picks the second best path with respect to path costs. 

(d) MinCostSquared:	 Every node picks the path that has the smallest sum of 
squares of link costs along the path. 

Assume that sufficient information is exchanged in the link state advertisements, so 
that every node has complete information about the entire network and can correctly 
implement the strategies above. You can also assume that a link’s properties don’t 
change, e.g., it doesn’t fail. 

(a) Help Alyssa figure out which of these strategies will work correctly, and which 
will result in routing with loops. In case of strategies that do result in rout­
ing loops, come up with an example network topology with a routing loop to 
convince Alyssa. 
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(b) How would you implement MinCostSquared in a distance-vector protocol? 
Specify what the advertisements should contain and what the integration step 
must do. 

8. Alyssa P. Hacker implements the 6.02 distance-vector protocol on the network shown 
below. Each node has its own local clock, which may not be synchronized with any 
other node’s clock. Each node sends its distance-vector advertisement every 100 
seconds. When a node receives an advertisement, it immediately integrates it. The 
time to send a message on a link and to integrate advertisements is negligible. No 
advertisements are lost. There is no HELLO protocol in this network. 

A

2

B C

DS

2 6 

2 7 
1 

(a) At time 0, all the nodes except D are up and running. At time 10 seconds, 
node D turns on and immediately sends a route advertisement for itself to all 
its neighbors. What is the minimum time at which each of the other nodes is guar­

anteed to have a correct routing table entry corresponding to a minimum-cost 
path to reach D? Justify your answers. 

(b) If every node sends packets to destination D, and to no other destination, which 
link would carry the most traffic? 

Alyssa is unhappy that one of the links in the network carries a large amount 
of traffic when all the nodes are sending packets to D. She decides to overcome 
this limitation with Alyssa’s Vector Protocol (AVP). In AVP, S lies, advertising 
a “path cost” for destination D that is different from the sum of the link costs 
along the path used to reach D. All the other nodes implement the standard 
distance-vector protocol, not AVP. 

(c) What is the smallest numerical value of the cost that S should advertise for D 
along each of its links, to guarantee that only its own traffic for D uses its direct 
link to D? Assume that all advertised costs are integers; if two path costs are 
equal, one can’t be sure which path will be taken. 

9. Help Ben Bitdiddle answer these questions about the distance-vector protocol he 
runs on the network shown in Figure 18-5. The link costs are shown near each link. 
Ben is interested in minimum-cost routes to destination node D. 

Each node sends a distance-vector advertisement to all its neighbors at times 
0, T,2T, . . .. Each node integrates advertisements at times T/2,3T/2,5T/2, . . .. You  
may assume that all clocks are synchronized. The time to transmit an advertisement 
over a link is negligible. There are no failures or packet losses. 

At each node, a route for destination D is valid if packets using that route will even­
tually reach D. 
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Figure 18-5: Time to converge = ? 

At each node, a route for destination D is correct if packets using that route will 
eventually reach D along some minimum-cost path. 

(a) At what time will all nodes have integrated a valid route to D into their routing 
tables? What node is the last one to integrate a valid route to D? Answer both 
questions. 

(b) At what time will all nodes have integrated a correct (minimum-cost) route to 
D into their routing tables? What node is the last one to integrate a correct route 
to D? Answer both questions. 

10.	 Go Ahead, Make My Route: Jack Ripper uses a minimum-cost distance-vector routing 
protocol in the network shown in Figure 18-6. Each link cost (not shown) is a positive 
integer and is the same in each direction of the link. Jack sets “infinity” to 32 in the 
protocol. After all routes have converged (breaking ties arbitrarily), F ’s routing table 
is as follows: 

A 

B C 

D 

E F 

Figure 18-6: Distance vector topology in Jack Ripper’s network. 

Using the information provided, answer these questions: 

(a) Fill in the two missing blanks in the table above. 
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Destination Cost Route 
A 6 link (FC) 
B 4 link (FC) 
C 
D 

3 
5 link (FD) 

E 1 

(b) For each link in the picture, write the link’s cost in the box near the link. Each 
cost is either a positive integer or an expression of the form “< c,≤ c,≥ c, or 
> c”, for some integer c. 

(c) Suppose link (FE) fails, but there are no other changes. When the protocol 
converges, what will F ’s route (not path) to E be? (If there is no route, say “no 
route”.) 

(d) Now suppose links (BC) and (BF ) also fail soon after link (FE) fails. There 
are no packet losses. In the worst case, C and F enter a “count-to-infinity” 
phase. How many distinct route advertisements (with different costs) must C 
hear from F , before C determines that it does not have any valid route to node 
A? 

11. Alyssa P. Hacker runs the link-state routing protocol in the network shown below. 
Each node runs Dijkstra’s algorithm to compute minimum-cost routes to all other 
destinations, breaking ties arbitrarily. 

B 

C 

A 

D E 

5 

1 1 

2 

6 
6 

7 

6 

Figure 18-7: Network in Alyssa’s link-state protocol. 

The links in Alyssa’s network are unreliable; on each link, any packet sent over the 
link is delivered with some probability, p, to the other end of the link, independent 
of all other events (0 < p < 1). Suppose links (CE) and (BD) fail. 

Answer the following questions. 
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(a) How do C and E discover that the link has failed? How does the method work? 

(b) Over this unreliable network, link state advertisements (LSAs) are lost accord­
ing to the probabilities mentioned above. Owing to a bug in its software, E does 
not originate any LSA of its own or flood them, but all other nodes (except E) 
work correctly. Calculate the probability that A learns that link (CE) has failed 
from the first LSA that originates from C after C discovers that link (CE) has 
failed. Note that link (BD) has also failed. 

(c) Suppose only link (CE) had failed, but not (BD), which like the other surviv­
ing links can delivery packets successfully with probability p. Now, would the 
answer to part (b) above increase, decrease, or  remain the same? Why? (No 
math necessary.) 
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