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CHAPTER 14 
Modulation and Demodulation 

This chapter describes the essential principles behind modulation and demodulation, which 
we introduced briefly in Chapter 10. Recall that our goal is to transmit data over a commu­
nication link, which we achieve by mapping the bit stream we wish to transmit onto analog 
signals because most communication links, at the lowest layer, are able to transmit ana­
log signals, not binary digits. The signals that most simply and directly represent the bit 
stream are called the baseband signals. We discussed in Chapter 10 why it is generally un­
tenable to directly transmit baseband signals over communication links. We reiterate and 
elaborate on those reasons in Section 14.1, and discuss the motivations for modulation of 
a baseband signal. In Section 14.2, we describe a basic principle used in many modulation 
schemes, called the heterodyne principle. This principle is at the heart of amplitude modulation 
(AM), the scheme we study in detail. Sections 14.3 and 14.4 describe the “inverse” process 
of demodulation, to recover the original baseband signal from the received version. Fi­
nally, Section 14.5 provides a brief overview of more sophisticated modulation schemes. 

• 14.1 Why Modulation? 
There are two principal motivating reasons for modulation. We described the first in Chap­
ter 10: matching the transmission characteristics of the medium, and considerations of 
power and antenna size, which impact portability. The second is the desire to multiplex, or  
share, a communication medium among many concurrently active users. 

• 14.1.1 Portability 

Mobile phones and other wireless devices send information across free space using electro­
magnetic waves. To send these electromagnetic waves across long distances in free space, 
the frequency of the transmitted signal must be quite high compared to the frequency of 
the information signal. For example, the signal in a cell phone is a voice signal with a 
bandwidth of about 4 kHz. The typical frequency of the transmitted and received signal is 
several hundreds of megahertz to a few gigahertz (for example, the popular WiFi standard 
is in the 2.4 GHz or 5+ GHz range). 
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Wi-Fi 

Figure 14-1: Top: Spectrum allocation in the United States (3 kHz to 300 GHz). Bottom: a portion of the to­

tal allocation, highlighting the 2.4 GHz ISM (Industrial, Scientific, and Medical) band, which is unlicensed 
spectrum that can be used for a variety of purposes, including 802.11b/g (WiFi), various cordless tele­

phones, baby monitors, etc.

One important reason why high-frequency transmission is attractive is that the size of 
the antenna required for efficient transmission is roughly one-quarter the wavelength of 
the propagating wave, as discussed in Chapter 10. Since the wavelength of the (electro­
magnetic) wave is inversely proportional to the frequency, the higher the frequency, the 
smaller the antenna. For example, the wavelength of a 1 GHz electromagnetic wave in free 
space is 30 cm, whereas a 1 kHz electromagnetic wave is one million times larger, 300 km, 
which would make for an impractically huge antenna and transmitter power to transmit 
signals of that frequency! 

• 14.1.2 Sharing using Frequency-Division 

Figure 14-1 shows the electromagnetic spectrum from 3 kHz to 300 GHz; it depicts how 
portions of spectrum have been allocated by the U.S. Federal Communications Commis­

This image was created by the US Department of Commerce, and is in the public domain.

http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf


201 SECTION 14.1. WHY MODULATION? 

Figure 14-2: An analog waveform corresponding to someone saying “Hello”. Picture from http:// 
electronics.howstuffworks.com/analog-digital2.htm. The frequency content and spectrum of 
this waveform is inherently band-limited to a few kilohertz. 

sion (FCC), which is the government agency that allocates this “public good” (spectrum). 
What does “allocation” mean? It means that the FCC has divided up frequency ranges 
and assigned them for different uses and to different entities, doing so because one can be 
assured that concurrent transmissions in different frequency ranges will not interfere with 
each other. 

The reason why this approach works is that when a sinusoid of some frequency is sent 
through a linear, time-invariant (LTI) channel, the output is a sinusoid of the same frequency, 
as we discovered in Chapter 12. Hence, if two different users send pure sinusoids at dif­
ferent frequencies, their intended receivers can extract the transmitted sinusoid by simply 
applying the appropriate filter, using the principles explained in Chapter 12. 

Of course, in practice one wants to communicate a baseband signal rather than a sinu­
soid over the channel. The baseband signal will often have been produced from a digital 
source. One can, as explained in Chapters 9 and 10, map each “1” to a voltage V1 held 
for some interval of time, and each “0” to a voltage V0 held for the same duration (let’s 
assume for convenience that both V1 and V0 are non-negative). The result is some wave­
form that might look like the picture shown in Figure 10-2.1 Alternatively, the baseband 
signal may come from an analog source, such as a microphone in an analog telephone, 
whose waveform might look like the picture shown in Figure 14-2; this signal is inherently 
“band-limited” to a few kilohertz, since it is produced from human voice. Regardless of 
the provenance of the input baseband signal, the process of modulation involves preparing 
the signal for transmission over a channel. 

If multiple users concurrently transmitted their baseband signals over a shared 

1We will see in the next section that we will typically remove its higher frequencies by lowpass filtering, to 
obtain a “band-limited” baseband signal. 

© HowStuffWorks, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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medium, it would be difficult for their intended receivers to extract the signals reliably 
because of interference. One approach to reduce this interference, known as frequency-

division multiplexing, allocates different carrier frequencies to different users (or for dif­
ferent uses, e.g., one might separate out the frequencies at which police radios or emer­
gency responders communicate from the frequencies at which you make calls on your 
mobile phone). In fact, the US spectrum allocation map shown in Figure 14-1 is the result 
of such a frequency-division strategy. It enables users (or uses) that may end up with sim­
ilar looking baseband signals (those that will interfere with each other) to be transmitted 
on different carrier frequencies, eliminating interference. 

There are two reasons why frequency-division multiplexing works: 

1. Any baseband signal can be broken up into a weighted sum of sinusoids using 
Fourier decomposition (Chapter 13). If the baseband signal is band-limited, then 
there is a finite maximum frequency of the corresponding sinusoids. One can take 
this sum and modulate it on a carrier signal of some other frequency in a simple 
way: by just multiplying the baseband and carrier signal (also called “mixing”). The 
result of modulating a band-limited baseband signal on to a carrier is a signal that is 
band-limited around the carrier, i.e., limited to some maximum frequency deviation from 
the carrier frequency. 

2. When transmitted over a linear, time-invariant (LTI) channel, and if noise is negli­
gible, each sinusoid shows up at the receiver as a sinusoid of the same frequency, as  
we saw in Chapter 12. The reason is that an LTI system preserves the sinusoids. If  we  
were to send a baseband signal composed of a sum of sinusoids over the channel, 
the output will be the sum of sinuoids of the same frequencies. Each receiver can 
then apply a suitable filter to extract the baseband signal of interest to it. This insight 
is useful because the noise-free behavior of real-world communication channels is 
often well-characterized as an LTI system. 

• 14.2 Amplitude Modulation with the Heterodyne Principle 
The heterodyne principle is the basic idea governing several different modulation 
schemes. The idea is simple, though the notion that it can be used to modulate signals 
for transmission was hardly obvious before its discovery! 

Heterodyne principle: The multiplication of two sinusoidal waveforms may 
be written as the sum of two sinusoidal waveforms, whose frequencies are 
given by the sum and the difference of the frequencies of the sinusoids being 
multiplied. 

This result may be seen from standard high-school trigonometric identities, or by (per­
haps more readily) writing the sinusoids as complex exponentials and performing the mul­
tiplication. For example, using trigonometry, 

  1 
cos(Ωsn) · cos(Ωcn) =  cos(Ωs +Ωc)n + cos(Ωs − Ωc)n . (14.1)

2

http:sinusoids.If
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We apply the heterodyne principle by treating the baseband signal —think of it as periodic 
with period 2π for now—as the sum of different sinusoids of frequencies Ωs1 = k1Ω1,Ωs2 = Ω1 
k2Ω1,Ωs3 = k3Ω1 . . . and treating the carrier as a sinusoid of frequency Ωc = kcΩ1. Here, Ω1 
is the fundamental frequency of the baseband signal. 

×x[n] t[n] 

cos(kcΩ1n) 

Figure 14-3: Modulation involved “mixing”, or multiplying, the input signal x[n] with a carrier signal 
(cos(Ωcn) = cos(kcΩ1n) here) to produce t[n], the transmitted signal. 

The application of the heterodyne principle to modulation is shown schematically in 
Figure 14-3. Mathematically, we will find it convenient to use complex exponentials; with 
that notation, the process of modulation involves two important steps: 

1.	 Shape the input to band-limit it. Take the input baseband signal and apply a low-
pass filter to band-limit it. There are multiple good reasons for this input filter, but 
the main one is that we are interested in frequency division multiplexing and wish 
to make sure that there is no interference between concurrent transmissions. Hence, 
if we limit the discrete-time Fourier series (DTFS) coefficients to some range, call it 
[−kx,−kx], then we can divide the frequency spectrum into non-overlapping ranges 
of size 2kx to ensure that no two transmissions interfere. Without such a filter, the 
baseband could have arbitrarily high frequencies, making it hard to limit interference 
in general. Denote the result of shaping the original input by x[n]; in effect, that is 
the baseband signal we wish to transmit. An example of the original baseband signal 
and its shaped version is shown in Figure 14-4. 

We may express x[n] in terms of its discrete-time Fourier series (DTFS) representation 
as follows, using what we learned in Chapter 13: 

kx L 
jkΩ1n x[n] =  Ake .	 (14.2) 

k=−kx 

Notice how applying the input filter ensures that high-frequency components are 
zero; the frequency range of the baseband is now [−kxΩ1, kxΩ1] radians/sample. 

2.	 Mixing step. Multiply x[n] (called the baseband modulating signal) by a carrier, 
cos(kcΩ1n), to produce the signal ready for transmission, t[n]. Using the DTFS form, 
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Baseband input x[n]: shaped pulses to band-limit signal 

Carrier signal 

Transmitted signal t[n]: “mix” (multiply x[n] and carrier) 

Figure 14-4: The two modulation steps, input filtering (shaping) and mixing, on an example signal. 

we get 

Equation (14.3) makes it apparent (see the underlined terms) that the process of mix­
ing produces, for each DTFS component, two frequencies of interest: one at the sum 
and the other at the difference of the mixed (multiplied) frequencies, each scaled to be 
one-half in amplitude compared to the original. 

We transmit t[n] over the channel. The heterodyne mixing step may be explained math­
ematically using Equation (14.3), but you will rarely need to work out the math from 
scratch in any given problem: all you need to know and appreciate is that the (shaped) 
baseband signal is simply replicated in the frequency domain at two different frequencies, 
±kc, which are the nonzero DTFS coefficients of the carrier sinusoidal signal, and scaled by 
1/2. We show this outcome schematically in Figure 14-5. 

The time-domain representation shown in Figure 14-4 is not as instructive as the 
frequency-domain picture to gain intuition about what modulation does and why frequency-
division multiplexing avoids interference. Figure 14-6 shows the same information as Fig­
ure 14-4, but in the frequency domain. The caption under that figure explains the key 
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For band-limited signal I.e., just replicate baseband  
Ak are nonzero only for signal at ±kc, and scale 
small range of ±k by ½. 
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Figure 14-5: Illustrating the heterodyne principle. 

insights. 
This completes our discussion of the modulation process, at least for now (we’ll revisit 

it in Section 14.5), bringing us to the question of how to extract the (shaped) baseband 
signal at the receiver. We turn to this question next. 

• 14.3 Demodulation: The Simple No-Delay Case 
Assume for simplicity that the receiver captures the transmitted signal, t[n], with no distor­
tion, noise, or delay; that’s about as perfect as things can get. Let’s see how to demodulate 
the received signal, r[n] =  t[n], to extract x[n], the shaped baseband signal. 

The trick is to apply the heterodyne principle once again: multiply the received signal 
by a local sinusoidal signal that is identical to the carrier! An elegant way to see what would 
happen is to start with Figure 14-6, rather than the time-domain representation. We now 
can pretend that we have a “baseband” signal whose frequency components are as shown 
in Figure 14-6, and what we’re doing now is to “mix” (i.e., multiply) that with the carrier. 
We can accordingly take each of the two (i.e., real and imaginary) pieces in the right-most 
column of Figure 14-6 and treat each in turn. 

The result is shown in Figure 14-7. The left column shows the frequency components 
of the original (shaped) baseband signal, x[n]. The middle column shows the frequency 
components of the modulated signal, t[n], which is the same as the right-most column of 
Figure 14-6. The carrier (cos(35Ω1n), so the DTFS coefficients of t[n] are centered around 
k = −35 and k = 35  in the middle column. Now, when we mix that with a local signal 
identical to the carrier, we will shift each of these two groups of coefficients by ±35 once 
again, to see a cluster of coefficients at −70 and 0 (from the −35 group) and at 0 and +70 
(from the +35 group). Each piece will be scaled by a further factor of 1/2, so the left and 
right clusters on the right-most column in Figure 14-7 will be 1/4 as large as the original 
baseband components, while the middle cluster centered at 0, with the same spectrum as the 
original baseband signal, will be scaled by 1/2. 

What we are interested in recovering is precisely this middle portion, centered at 0, be­
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Band-limited x[n] cos(35Ω1n) t[n] 

Figure 14-6: Frequency-domain representation of Figure 14-4, showing how the DTFS components (real 
and imaginary) of the real-valued band-limited signal x[n] after input filtering to produce shaped pulses 
(left), the purely cosine sinusoidal carrier signal (middle), and the heterodyned (mixed) baseband and 
carrier at two frequency ranges whose widths are the same as the baseband signal, but that have been 
shifted ±kc in frequency, and scaled by 1/2 each (right). We can avoid interference with another signal 
whose baseband overlaps in frequency, by using a carrier for the other signal sufficiently far away in 
frequency from kc. 

cause in the absence of any distortion, it is exactly the same as the original (shaped) baseband, 
except that is scaled by 1/2. 

How would we recover this middle piece alone and ignore the left and right clusters, 
which are centered at frequencies that are at twice the carrier frequency in the positive and 
negative directions? We have already studied a technique in Chapter 12: a low-pass filter. 
By applying a low-pass filter whose cut-off frequency lies between kx and 2kc − kx, we can 
recover the original signal faithfully. 

We can reach the same conclusions by doing a more painstaking calculation, similar to 
the calculations we did for the modulation, leading to Equation (14.3). Let z[n] be the sig­
nal obtained by multiplying (mixing) the local replica of the carrier cos(kcΩ1n) and the re­
ceived signal, r[n] =  t[n], which is of course equal to x[n] cos(kcΩ1n). Using Equation 14.3, 
we can express z[n] in terms of its DTFS coefficients as follows: 
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x[n] t[n] z[n] 

Figure 14-7: Applying the heterodyne principle in demodulation: frequency-domain explanation. The left 
column is the (shaped) baseband signal spectrum, and the middle column is the spectrum of the modu­

lated signal that is transmitted and received. The portion shown in the vertical rectangle in the right-most 
column has the DTFS coefficients of the (shaped) baseband signal, x[n], scaled by a factor of 1/2, and may 
be recovered faithfully using a low-pass filter. This picture shows the simplified ideal case when there is 
no channel distortion or delay between the sender and receiver. 

The middle term, underlined, is what we want to extract. The first term is at twice the 
carrier frequency above the baseband, while the third term is at twice the carrier frequency 
below the baseband; both of those need to be filtered out by the demodulator. 

• 14.3.1 Handling Channel Distortions 

Thus far, we have considered the ideal case of no channel distortions or delays. We relax 
this idealization and consider channel distortions now. If the channel is LTI (which is very 
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� y[n] z[n]t[n] Channel 
H(Ω) 

cos(kcΩ1n) 

Figure 14-8: Demodulation in the presence of channel distortion characterized by the frequency response 
of the channel. 

often the case), then one can extend the approach described above. The difference is that 
each of the Ak terms in Equation (14.4), as well as Figure 14-7, will be multiplied by the 
frequency response of the channel, H(Ω), evaluated at a frequency of kΩ1. So each DTFS 
coefficient will be scaled further by the value of this frequency response at the relevant 
frequency. 

Figure 14-8 shows the model of the system now. The modulated input, t[n], traverses 
the channel en route to the demodulator at the receiver. The result, z[n], may be written as 
follows: 

Of these three terms in the RHS of Equation (14.5), the first term contains the baseband 
signal that we want to extract. We can do that as before by applying a lowpass filter to get 
rid of the ±2kc components. To then recover each Ak, we need to pass the output of the 
lowpass filter to another LTI filter that undoes the distortion by multiplying the kth Fourier 
coefficient by the inverse of H((k + kc)Ω1) +  H((k − kc)Ω1). Doing so, however, will also 
amplify any noise at frequencies where the channel attenuated the input signal t[n], so a  
better solution is obtained by omitting the inversion at such frequencies. 

For this procedure to work, the channel must be relatively low-noise, and the receiver 
needs to know the frequency response, H(Ω), at all the frequencies of interest in Equation 
(14.5); i.e., in the range [−kc − kx,−kc + kx] and [kc − kx, kc + kx]. To estimate H(Ω), a com­
mon approach is to send a known preamble at the beginning of each packet (or frame) 
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SECTION 14.4. HANDLING CHANNEL DELAY: QUADRATURE DEMODULATION 

×t[n] z[n] LPF y[n] 

Cutoff @ ±kx 
Filter gain depends on H values 

cos(k Ω1n) 

Figure 14-9: Demodulation steps: the no-delay case (top). LPF is a lowpass filter. The graphs show the 
time-domain representations before and after the LPF. 

of transmission. The receiver looks for this known preamble to synchronize the start of 
reception, and because the transmitted signal pattern is known, the receiver can deduce 
channel’s the unit sample response, h[·], from it, using an approach similar to the one out­
lined in Chapter 11. One can then apply the frequency response equation from Chapter 
12, Equation (2.2), to estimate H(Ω) and use it to approximately undo the distortion intro­
duced by the channel. 

Ultimately, however, our interest is not in accurately recovering x[n], but rather the 
underlying bit stream. For this task, what is required is typically not an inverse filtering 
operation. We instead require a filtering that produces a signal whose samples, obtained at 
the bit rate, allow reliable decisions regarding the corresponding bits, despite the presence 
of noise. The optimal filter for this task is called the matched filter. We leave the discussion 
of the matched filter to more advanced courses in communication. 

• 14.4 Handling Channel Delay: Quadrature Demodulation 
We now turn to the case of channel delays between the sender and receiver. This delay 
matters in demodulation because we have thus far assumed that the sender and receiver 
have no phase difference with respect to each other. That assumption is, of course, not 
true, and one needs to somehow account for the phase delays. 

Let us first consider the illustrative case when there is a phase error between the sender 
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Time delay of D samples 

X
t[n] z[n] 

LPF y[n] 

Cutoff @ ±kx 

Xx[n] D 
tD[n] 

Gain depends on Hcos(kcΩ1n) cos(kcΩ1n) 

Figure 14-10: Model of channel with a delay of D samples. 

and receiver. We will then show that a non-zero delay on the channel may be modeled 
exactly like a phase error. By “phase error”, we mean that the demodulator, instead of 
multiplying (heterodyning) by cos(kcΩ1n), multiplies instead by cos(kcΩ1n − ϕ), where ϕ 
is some constant value. Let us understand what happens to the demodulated output in 
this case. 

Working out the algebra, we can write 

z[n] =  t[n] cos(kcΩ1n − ϕ) 
= x[n] cos(kcΩ1n) cos(kcΩ1n − ϕ) (14.6) 

But noting that 

it follows that the demodulated output, after the LPF step with the suitable gains, is 

y[n] =  x[n] cos  ϕ. 

Hence, a phase error of ϕ radians results in the demodulated amplitude being scaled 
by cos ϕ. This scaling is problematic: if we were unlucky enough to have the error close 
to π/2, then we would see almost no output at all! And if x[n] could take on both positive 
and negative values, then cos ϕ going negative would cause further confusion. 

A channel delay between sender and receiver manifests itself as a phase error using the 
demodulation strategy we presented in Section 14.3. To see why, consider Figure 14-10, 
where we have inserted a delay of D samples between sender and receiver. The algebra is 
very similar to the phase error case: with a sample delay of D samples, we find that 

y[n] =  t[n − D] cos(kcΩ1n) =  x[n − D] cos(kcΩ1(n − D)) cos(kcΩ1n). 

The first cos factor in effect looks like it has a phase error of kcΩ1D, so the output is attenu­
ated by cos(kcΩ1D). 

So how do we combat phase errors? One approach is to observe that in situations 
where cos ϕ is 0, sin ϕ is close to 1. So, in those cases, multiplying (heterodyning) at the 
demodulator by sin(kcΩ1n) = cos(π − kcΩ1n) corrects for the phase difference. Notice,2 
however, that if the phase error were non-existent, then multiplying by sin(kcΩ1n) would 
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× LPF I[n] = x[n-D]·cos(θ) 
tD[n]=t[n-D] 

Cutoff @ ±kin
From Gain = 2 θ = ΩcD - φcos(Ωcn-ϕ)
channel 

× LPF Q[n] = x[n-D]·sin(θ) 

Cutoff @ ±kin 
Gain = 2sin(Ωcn-ϕ) 

Figure 14-11: Quadrature demodulation to handle D-sample channel delay. 

lead to no baseband signal—you should verify this fact by writing 

and expanding t[n] using its DTFS. Hence, multiplying by the sin when the carrier is a cos 
will not always work; it will work only when the phase error is a fortunate value (≈ π/2). 

This observation leads us to a solution to this problem, called quadrature demodula­

tion, depicted in Figure 14-11 for the case of channel delay but no channel distortion (so 
we can apply a gain of 2 on the LPFs rather than factors dependent on H(Ω)). The idea is 
to multiply the received signal by both cos(Ωcn) (where Ωc = kcΩ1 is the carrier frequency), 
and sin(Ωcn). This method is a way of “hedging” our bet: we cannot be sure which term, 
cos or sin would work, but we can be sure that they will not be 0 at the same time! We can 
use this fact to recover the signal reliably always, as explained below. 

For simplicity (and convenience), suppose that x[n] ≥ 0 always (at the input). Then, 
using the notation from Figure 14-11, define w[n] =  I[n] +  jQ[n] (the I term is generally 
called the in-phase term and the Q term is generally called the quadrature term). Then, 

J
|w[n]| = (I[n])2 + (Q[n])2 

 
= |x[n − D]| (cos2θ + sin2 θ) 
= |x[n − D]| (14.7) 
= x[n − D] becausex[·] ≥ 0 (14.8) 

Hence, the quadrature demodulator performs the following step, in addition to the 
ones for the no-delay case explained before: compute I[n] and Q[n], and calculate |w[n]|
using Equation (14.8). Return this value, thresholding (to combat noise) at the mid-point 
between the voltage levels corresponding to a “0” and a “1”. With quadrature demodula­
tion, suppose the sender sends 0 volts for a “0” and 1 volt for a “1”, the receiver would, 
in general, demodulate a rotated version in the complex plane, as shown in Figure 14-12. 
However, the magnitude will still be 1, and quadrature demodulation can successfully 
recover the input. 

Figure 14-13 summarizes the various steps of the quadrature demodulator that we de­
scribed in this section. 

This concludes our discussion of the basics of demodulation. We turn next to briefly 

z[n] = t[n] sin(kc⌦1

n) = t[n]
⇣
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jQ 


x[n-D]sin(θ) 

θ 

Constellation diagrams: 

x[n-D] = { 0, 1 } 

I 
x[n-D]cos(θ) I 

Q 

I 

Q 

transmitter receiver 


Figure 14-12: Quadrature demodulation. The term “constellation diagram” refers to the values that the 
sender can send, in this case just 0 and 1 volts. The receiver’s steps are shown in the picture. 

survey more sophisticated modulation/demodulation schemes. 

• 14.5 More Sophisticated (De)Modulation Schemes 
We conclude this chapter by briefly outlining three more sophisticated (de)modulation 
schemes. 

• 14.5.1 Binary Phase Shift Keying (BPSK) 

In BPSK, as shown in Figure 14-14, the transmitter selects one of two phases for the carrier, 
e.g. −π/2 for “0” and π/2 for “1”. The transmitter does the same mixing with a sinusoid 
as explained earlier. The receiver computes the I and Q components from its received 
waveform, as before. This approach “almost” works, but in the presence of channel delays 
or phase errors, the previous strategy to recover the input does not work because we had 
assumed that x[n] ≥ 0. With BPSK, x[n] is either +1 or −1, and the two levels we wish to 
distinguish have the same magnitude on the complex plane after quadrature demodula­
tion! 

The solution is to think of the phase encoding as a differential, not absolute: a change in 
phase corresponds to a change in bit value. Assume that every message starts with a “0” 
bit. Then, the first phase change represents a 0 → 1 transition, the second phase change a 
1 → 0 transition, and so on. One can then recover all the bits correctly in the demodulator 
using this idea, assuming no intermediate glithces (we will not worry about such glitches 
here, which do occur in practice and must be dealt with). 

• 14.5.2 Quadrature Phase Shift Keying (QPSK) 

Quadrature Phase Shift Keying is a clever idea to add a “degree of freedom” to the system 
(and thereby extracting higher performance). This method, shown in Figure 14-15, uses a 
quadrature scheme at both the transmitter and the receiver. When mapping bits to voltage 
values in QPSK, we would choose the values so that the amplitude of t[n] is constant. 
Moreover, because the constellation now involves four symbols, we map two bits to each 
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Figure 14-13: Quadrature demodulation: overall system view. The “alternative representation” shown 
implements the quadrature demodulator using a single complex exponential multiplication, which is a 
more compact representation and description. 

symbol. So 00 might map to (A, A), 01 to (−A, A), 11 to (−A, −A), and 10 to (A, −A)√ 
(the amplitude is therefore 2A). There is some flexibility in this mapping, but it is not 
completely arbitrary; for example, we were careful here to not map 11 to (A, −A) and 00 to 
(A, A). The reason is that any noise is more likely to cause (A, A) to be confused fo (A, −A), 
compared to (−A, −A), so we would like a symbol error to corrupt as few bits as possible. 

• 14.5.3 Quadrature Amplitude Modulation (QAM) 

QAM may be viewed as a generalization of QPSK (in fact, QPSK is sometimes called QAM­
4). One picks additional points in the constellation, varying both the amplitude and the 
phase. In QAM-16 (Figure 14-16), we map four bits per symbol. Denser QAM constella­
tions are also possible; practical systems today use QAM-4 (QPSK), QAM-16, and QAM­
64. Quadrature demodulation with the adjustment for phase is the demodulation scheme 
used at the receiver with QAM. 

For a given transmitter power, the signal levels corresponding to different bits at the 
input get squeezed closer together in amplitude as one goes to constellations with more 
points. The resilience to noise reduces because of this reduced separation, but sophisti­
cated coding and signal processing techniques may be brought to bear to deal with the 
effects of noise to achieve higher communication bit rates. In many real-world commu­
nication systems, the physical layer provides multiple possible constellations and choice 
of codes; for any given set of channel conditions (e.g., the noise variance, if the channel 
is well-described using the AWGN model), there is some combination of constellation, 
coding scheme, and code rate, which maximizes the rate at which bits can be received 
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In binary phase-shift keying (BPSK), the message bit selects one of 
I two phases for the carrier, e.g., T/2 for 0 and –T/2 for 1. 

Q 

× 

sin(Ωcn) 

(-1,1)x[n] 

× 
cos(Ωcn) 

× 

sin(Ωcn) 

LPF 

 

LPF 

phase[n] 
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I[n] 

Q[n] 

Figure 14-14: Binary Phase Shift Keying (BPSK). 

and decoded reliably. Higher-layer “bit rate selection” protocols use information about 
the channel quality (signal-to-noise ratio, packet loss rate, or bit error rate) to make this 
decision. 
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Still need band limiting at transmitter 

(-A,A) LPF Qmsg[0::2] × 
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Figure 14-15: Quadrature Phase Shift Keying (QPSK). 
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Figure 14-16: Quadrature Amplitude Modulation (QAM). 

•
 

Problems

 
and

 
Questions

 

1. The Boston sports radio station WEEI AM (“amplitude modulation”) broadcasts on a 
carrier frequency of 850 kHz, so its continuous-time (CT) carrier signal can be taken 
to be cos(2π × 850 × 103t), where t is measured in seconds. Denote the CT audio 
signal that’s modulated onto this carrier by x(t), so that the CT signal transmitted by 
the radio station is 

y(t) =  x(t) cos(2π × 850 × 103t) , (14.9) 

as indicated schematically on the left side of the figure below. 
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We use the symbols y[n] and x[n] to denote the discrete-time (DT) signals that would 
have been obtained by respectively sampling y(t) and x(t) in Equation (14.9) at fs 
samples/sec; more specifically, the signals are sampled at the discrete time instants 
t = n(1/fs). Thus 

y[n] =  x[n] cos(Ωcn) (14.10) 

for an appropriately chosen value of the angular frequency Ωc. Assume that x[n] is  
periodic with some period N , and that fs = 2  × 106 samples/sec.  

Answer the following questions, explaining your answers in the space provided.  

(a) Determine the value of Ωc in Equation (14.10), restricting your answer to a value 
in the range [−π,π]. (You can assume in what follows that the period N of x[n] is 
such that Ωc = 2kcπ/N for some integer kc; this is a detail, and needn’t concern 
you unduly.) 

(b) Suppose the Fourier series coefficients X[k] of the DT signal x[n] in Equation 
(14.10) are purely real, and are as shown in the figure below, plotted as a function 
of Ωk = 2kπ/N . (Note that the figure is not drawn to scale. Also, the different 
values of Ωk are so close to each other that we have just interpolated adjacent 
values of X[k] with a straight line, rather than showing you a discrete “stem” 
plot.) Observe that the Fourier series coefficients are non-zero for frequencies 
Ωk in the interval [−.005π, .005π], and 0 at all other Ωk in the interval [−π,π]. 

Draw a carefully labeled sketch below (though not necessarily to scale) to show 
the Fourier series coefficients of the DT modulated signal y[n]. However, rather 
than labeling your horizontal axis with the Ωk, as we have done above, you 
should label the axis with the appropriate frequency fk in Hz. 

Assume now that the receiver detects the CT signal w(t) = 10−3y(t − t0), where t0 = 
3 × 10−6 sec, and that it samples this signal at fs samples/sec, thereby obtaining the 
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for an appropriately chosen integer M . 

C.	 Determine the value of M in Equation (14.11). 

D.	 Noting your answer from part B, determine for precisely which intervals of the 
frequency axis the Fourier series coefficients of the signal y[n − M ] in Equation 
(14.11) are non-zero. You need not find the actual coefficients, only the fre­
quency range over which these coefficients will be non-zero. Also state whether 
or not the Fourier coefficients will be real. Explain your answer. 

E.	 The demodulation step to obtain the DT signal x[n − M ] from the received signal 
w[n] now involves multiplying w[n] by a DT carrier-frequency signal, followed 
by appropriate low-pass filtering (with the gain of the low-pass filter in its pass-
band being chosen to scale the signal to whatever amplitude is desired). Which 
one of the following six DT carrier-frequency signals would you choose to mul­
tiply the received signal by? Circle your choice and give a brief explanation. 

i. cos ⌦cn .

ii. cos

⇣
⌦c(n�M)

⌘
.

iii. cos

⇣
⌦c(n+M)

⌘
.

iv. sin

⇣
⌦cn

⌘
.

v. sin

⇣
⌦c(n�M)

⌘
.

vi. sin ⌦c(n+M) .

⇣ ⌘

⇣ ⌘

DT signal
w[n] = 10

�3y[n M ] = 10

�3x[n M ] cos ⌦c(n M) (14.11)� �

⇣
�

⌘
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M-sample 
delay 

x1[n] 

x2[n] 

y[n] 

w[n] 

v[n] 

-1000 1000 

-500500 -250 250 500 

Figure 14-17: System for problem 2. 

2. All parts of this question pertain to the following modulation-demodulation system 
shown in Figure 14-17, where all signals are periodic with period P = 10000. Please 
also assume that the sample rate associated with this system is 10000 samples per 
second, so that k is both a coefficient index and a frequency. In the diagram, the 
modulation frequency, km, is  500. 

(a) Suppose the DFT coefficients for the signal y[n] in the modula­
tion/demodulation diagram are as plotted in Figure 14-17.  
Assuming that M = 0  for the M -sample delay (no delay), plot the coefficients  
for the signals w and v in the modulation/demodulation diagram. Be sure to  
label key features such as values and coefficient indices for peaks.  

(b) Assuming the coefficients for the signal y[n] are the same as in part (a), please 
plot the DTFS coefficients for the signal x1 in the modulation/demodulation 
diagram. Be sure to label key features such as values and coefficient indices for 
peaks. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

219 SECTION 14.5. MORE SOPHISTICATED (DE)MODULATION SCHEMES 

(c) If the M -sample delay in the modulation/demodulation diagram has the right 
number of samples of delay, then it will be possible to nearly perfectly recover 
x2[n] by low-pass filtering w[n]. Determine the smallest positive number of sam­
ples of delay that are needed and the cut-off frequency for the low-pass filter. 
Explain your answer, using pictures if appropriate. 

3. Figure 14-18 shows a standard modulation/demodulation scheme where N = 100. 

Figure 14-18: System for problem 3. 

(a) Figure 14-19 shows a plot of the input, x[n]. Please draw the approximate time-
domain waveform for y[n], the signal that is the input to the low-pass filter in 
the demodulator. Don’t bother drawing dots for each sample, just use a line 
plot to indicate the important timing characteristics of the waveform. 

Figure 14-19: Plot for problem 3(a). 

(b) Building on the scheme shown in Part (a), suppose there are multiple modu­
lators and demodulators all connected to a single shared channel, with each 
modulator given a different modulation frequency. If the low-pass filter in each 
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modulator is eliminated, briefly describe what the effect will be on signal z[n], 
the output of a demodulator tuned to the frequency of a particular transmitter. 

4. The plot on the left of Figure 14-20 shows ak, the DTFS coefficients of the signal at 
the output of a transmitter with N = 36. If the channel introduces a 3-sample delay, 
please plot the Fourier series coefficients of the signal entering the receiver. 

Figure 14-20: System for problem 4. 
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5. Figure 14-21 shows an image rejection mixer. The frequency responses of the two 
filter components (the 90-degree phase shift and the low-pass filter) are as shown. 
The spectral plot to the left in figure above shows the spectrum of the input sig­
nal, x[n]. Using the same icon representation of a spectrum, draw the spectrum for 
signals p[n], q[n], r[n], and s[n] below, taking care to label the center frequency and 
magnitude of each spectral component. If two different icons overlap, simply draw 
them on top of one another. If identical icons overlap, perform the indicated addi­
tion/subtraction, showing the net result with a bold line. 

Figure 14-21: Problem 5: image rejection mixer. 
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