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CHAPTER 9 
Noise 

Liars, d—–d liars, and experts. 
—possibly Judge George Bramwell (quoted in 1885), expressing his opinion of 
witnesses 

There are three kinds of lies: lies, damned lies, and statistics. 
—definitely Mark Twain (writing in 1904), in a likely misattribution to Ben­
jamin Disraeli 

God does not play dice with the universe. 
—Albert Einstein, with probability near 1 

In general, many independent factors affect a signal received over a channel. Those 
that have a repeatable, deterministic effect from one transmission to another are generally 
referred to as distortion. We shall examine a very important class of distortions—those 
induced by linear, time-invariant channels—in later chapters. Other factors have effects that 
are better modeled as random, and we collectively refer to them as noise. Communication 
systems are no exception to the general rule that any system in the physical world must 
contend with noise. In fact, noise is a fundamental aspect of all communication systems. 

In the simplest binary signaling scheme—which we will invoke for most of our pur­
poses in this course—a communication system transmits one of two voltages, mapping a 
“0” to the voltage V0 and mapping a “1” to V1. The appropriate voltage is held steady over 
a fixed-duration time slot that is reserved for transmission of this bit, then moved to the 
appropriate voltage for the bit associated with the next time slot, and so on. We assume 
in this chapter that any distortion has been compensated for at the receiver, so that in an 
ideal noise-free case the receiver ends up measuring V0 in any time slot corresponding to 
a “0”, and V1 in any slot corresponding to a “1”. 

In this chapter we focus on the case where V1 = Vp > 0 and V0 = −Vp, where Vp is 
some fixed positive voltage, typically the peak voltage magnitude that the transmitter is 
capable of imposing on the communication channel. This scheme is sometimes referred 
to as bipolar signaling or bipolar keying. Other choices of voltage levels are possible, of 
course. 
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In the presence of noise, the receiver measures a sequence of voltage samples y[k] that 
is unlikely to be exactly V0 or V1. To deal with this variation, we described in the previous 
chapter a simple and intuitively reasonable decision rule, for the receiver to infer whether 
the bit transmitted in a particular time slot was a “0” or a “1”. The receiver first chooses a 
single voltage sample from the sequence of received samples within the appropriate time 
slot, and then compares this sample to a threshold voltage Vt. Provided “0” and “1” are 
equally likely to occur in the sender’s binary stream, it seems reasonable that we should 
pick as our threshold the voltage that “splits the difference”, i.e., use Vt = (V0 + V1)/2. 
Then, assuming V0 < V1, return “0” as the decision if the received voltage sample is smaller 
than Vt, otherwise return “1”. 

The receiver could also do more complicated things; for example, it could form an av­
erage or a weighted average of all the voltage samples in the appropriate time slot, and 
then compare this average with the threshold voltage Vt. Though such averaging leads in 
general to improved performance, we focus on the simpler scheme, where a single well-
selected sample in the time slot is compared with Vt. In this chapter we will analyze the 
performance of this decision rule, in terms of the probability of an incorrect decision at the 
receiver, an event that would manifest itself as a bit error at the receiver. 

The key points of this chapter are as follows: 

1. A simple model—and often a good model—for the net effect at the receiver of noise 
in the communication system is to assume additive, Gaussian noise. In this model, 
each received signal sample is the sum of two components. The first component is 
the deterministic function of the transmitted signal that would be obtained in the ab­
sence of noise. (Throughout this chapter, we will assume no distortion in the chan­
nel, so the deterministic function referred to here will actually produce at the receiver 
exactly the same sample value transmitted by the sender, under the assumption of 
no noise.) The second component is the noise term, and is a quantity drawn from 
a Gaussian probability distribution with mean 0 and some variance, independent of 
the transmitted signal. The Gaussian distribution is described in more detail in this 
chapter. 

If this Gaussian noise variable is also independent from one sample to another, we 
describe the underlying noise process as white Gaussian noise, and refer to the noise 
as additive white Gaussian noise (AWGN); this is the case we will consider. The origin 
of the term “white” will become clearer when we examine signals in the frequency 
domain, later in this course. The variance of the zero-mean Gaussian noise variable 
at any sample time for this AWGN case reflects the power or intensity of the un­
derlying white-noise process. (By analogy with what is done with electrical circuits 
or mechanical systems, the term “power” is generally used for the square of a signal 
magnitude. In the case of a random signal, the term generally denotes the expected or 
mean value of the squared magnitude.) 

2. If the sender transmitted a signal corresponding to some bit, b, and the receiver mea­
sured its voltage as being on the correct side of the threshold voltage Vt, then the bit 
would be received correctly. Otherwise, the result is a bit error. The probability of 
a bit error is an important quantity, which we will analyze. This probability, typi­
cally called the bit error rate (BER), is related to the probability that a Gaussian ran­
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dom variable exceeds some level; we will calculate it using the probability density 
function (PDF) and cumulative distribution function (CDF) of a Gaussian random 
variable. We will find that, for the bipolar keying scheme described above, when 
used with the simple threshold decision rule that was also specified above, the BER 
is determined by the ratio of two quantities: (i) the power or squared magnitude, V 2 ,p 
of the received sample voltage in the noise-free case; and (ii) the power of the noise 
process. This ratio is an instance of a signal-to-noise ratio (SNR), and such ratios are 
of fundamental importance in understanding the performance of a communication 
system. 

3. At the signal abstraction, additive white Gaussian noise is often a good noise model. 
At the bit abstraction, this model is inconvenient because we would have to keep 
going to the signal level to figure out exactly how it affects every bit. Fortunately, the 
BER allows us to think about the impact of noise in terms of how it affects bits. In 
particular, a simple, but powerful, model at the bit level is that of a binary symmetric 
channel (BSC). Here, a transmitted bit b (0 or 1) is interpreted by the receiver as 
1 − b with probability pe and interpreted as b with probability 1 − pe, where pe is the 
probability of a bit error (i.e., the bit error rate). In this model, each bit is corrupted 
independently of the others, and the probability of corruption is the same for all bits 
(so the noise process is an example of an “iid” random process: “independent and 
identically distributed”). 

• 9.1 Origins of noise 
A common source of noise in radio and acoustic communications arises from interfer­
ers who might individually or collectively make it harder to pick out the communication 
that the receiver is primarily interested in. For example, the quality of WiFi communi­
cation is affected by other WiFi communications in the same frequency band (later in the 
course we will develop methods to mitigate such interference), an example of intereference 
from other users or nodes in the same network. In addition, interference could be caused 
by sources external to the network of interest; WiFi, for example, if affected by cordless 
phones, microwave ovens, Bluetooth devices, and so on that operate at similar radio fre­
quencies. Microwave ovens are doubly troublesome if you’re streaming music over WiFi, 
which in the most common mode runs in the 2.4 GHz frequency band today—not only 
do microwave ovens create audible disturbances that affect your ability to listen to music, 
but they also radiate power in the 2.4 GHz frequency band. This absorption is good for 
heating food, but leakage from ovens interferes with WiFi receptions! In addition, wireless 
communication networks like WiFi, long-range cellular networks, short-range Bluetooth 
radio links, and cordless phones all suffer from fading, because users often move around 
and signals undergo a variety of reflections that interfere with each other (a phenomenon 
known as “multipath fading”). All these factors cause the received signal to be different 
from what was sent. 

If the communication channel is a wire on an integrated circuit, the primary source of 
noise is capacitive coupling between signals on neighboring wires. If the channel is a wire 
on a printed circuit board, signal coupling is still the primary source of noise, but coupling 
between wires is largely inductive or carried by unintended electromagnetic radiation. 
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In both these cases, one might argue that the noise is not truly random, as the signals 
generating the noise are under the designer’s control. However, a signal on a wire in an 
integrated circuit or on a printed circuit board will frequently be affected by signals on 
thousands of other wires, so approximating the interference using a random noise model 
turns out to work very well. 

Noise may also arise from truly random physical phenomena. For example, electric 
current in an integrated circuit is generated by electrons moving through wires and across 
transistors. The electrons must navigate a sea of obstacles (atomic nuclei), and behave 
much like marbles traveling through a Pachinko machine. They collide randomly with 
nuclei and have transit times that vary randomly. The result is that electric currents have 
random noise. In practice, however, the amplitude of the noise is typically several orders 
of magnitude smaller than the nominal current. Even in the interior of an integrated cir­
cuit, where digital information is transported on micron-wide wires, the impact of electron 
transit time fluctuations is negligible. By contrast, in optical communication channels, fluc­
tuations in electron transit times in circuits used to convert between optical and electronic 
signals at the ends of the fiber are the dominant source of noise. 

To summarize: there is a wide variety of mechanisms that can be the source of noise; 
as a result, the bottom line is that it is physically impossible to construct a noise-free channel. 
By understanding noise and analyzing its effects (bit errors), we can develop approaches 
to reducing the probability of errors caused by noise and to combat the errors that will 
inevitably occur despite our best efforts. We will also learn in a later chapter about a cele­
brated and important result of Shannon: provided the information transmission rate over 
a channel is kept below a limit referred to as the channel capacity (determined solely by the 
distortion and noise characteristics of the channel), we can transmit in a way that makes 
the probability of error in decoding the sender’s message vanish asymptotically as the 
message size goes to ∞. This asymptotic performance is attained at the cost of increas­
ing computational burden and increasing delay in deducing the sender’s message at the 
receiver. Much research and commercial development has gone into designing practical 
methods to come close to this “gold standard”. 

•	 9.2 Additive White Gaussian Noise: A Simple but Powerful 
Model 

We will posit a simple model for how noise affects the reception of a signal sent over a 
channel and processed by the receiver. In this model, noise is: 

1.	 Additive: Given a received sample value y[k] at the kth sample time, the receiver 
interprets it as the sum of two components: the first is the noise-free component y0[k], 
i.e., the sample value that would have been received at the kth sample time in the 
absence of noise, as a result of the input waveform being passed through the channel 
with only distortion present; and the second is the noise component w[k], assumed 
independent of the input waveform. We can thus write 

y[k] = y0[k] +w[k] .	 (9.1) 
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In the absence of distortion, which is what we are assuming here, y0[k] will be either 
V0 or V1. 

2.	 Gaussian: The noise component w[k] is random, but we assume it is drawn at each 
sample time from a fixed Gaussian distribution; for concreteness, we take this to be 
the distribution of a Gaussian random variable W , so that each w[k] is distributed 
exactly as W is. The reason why a Gaussian makes sense is because noise is often 
the result of summing a large number of different and independent factors, which 
allows us to apply an important result from probability and statistics, called the cen­
tral limit theorem. This states that the sum of independent random variables is well 
approximated (under rather mild conditions) by a Gaussian random variable, with 
the approximation improving as more variables are summed in. 

The Gaussian distribution is beautiful from several viewpoints, not least because it is 
characterized by just two numbers: its mean μ, and its variance σ2 or standard deviation 
σ. In our noise model, we will assume that the mean of the noise distribution is 0. 
This assumption is not a huge concession: any consistent non-zero perturbation is 
easy to compensate for. For zero-mean Gaussian noise, the variance, or equivalently 
the standard deviation, completely characterizes the noise. The standard deviation σ 
may be thought of as a measure of the expected “amplitude” of the noise; its square 
captures the expected power. 

For noise not to corrupt the digitization of a bit detection sample, the distance be­
tween the noise-free value of the sample and the digitizing threshold should be suf­
ficiently larger than the expected amplitude—or standard deviation—of the noise. 

3.	 White: This property concerns the temporal variation in the individual noise sam­
ples that affect the signal. If these Gaussian noise samples are independent from 
one sample to another, the underlying noise process is referred to as white Gaussian 
noise. “White” refers to the frequency decomposition of the sequence of noise sam­
ples, and essentially says that the noise signal contains components of equal expected 
power at all frequencies. This statement will become clearer later in the course when 
we talk about the frequency content of signals. 

This noise model is generally given the term AWGN, for additive white Gaussian noise. 
We will use this term. 

• 9.2.1 Estimating the Noise Parameters 

It is often of interest to estimate the noise parameters from measurements; in our Gaussian 
model, these are the parameters μ and σ2 . If we simply transmit a sequence of “0” bits, 
i.e., hold the voltage V0 at the transmitter, and observe the received samples y[k] for k = 
0,1, . . . ,K  − 1, we can process these samples to obtain the statistics of the noise process 
for additive noise. Under the assumption of no distortion, and constant (or “stationary”) 
noise statistics, and noise samples w[k] = y[k]− V0 that are independent from one sampling 
instant to another, we can use the sample mean m to estimate μ, where 

K−1 1 
m = w[k] .	 (9.2)

K 
k=0 
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The law of large numbers from probability and statistics ensures that as K tends to ∞, the 
sample mean m converges to μ, which we have assumed is 0. 

With μ = 0, the quantity that is more indicative of the power of the noise is the variance 
σ2, which can be estimated by the sample variance s2, given by 

K−1
12 2 s = (w[k]− m) . (9.3)
K 

k=0 

Again, this converges to σ2 as K tends to ∞. 

• 9.2.2 The Gaussian Distribution 

Let us now understand the Gaussian distribution in the context of our physical commu­
nication channel and signaling process. In our context, the receiver and sender both deal 
with voltage samples. The sample y[k] at the receiver has a noise term, w[k], contributing 
to it additively, where w[k] is obtained from the following probability density function (PDF), 
which specifies a Gaussian distribution: 

(w−μ)21 −fW (w) = √ e 2σ2 . (9.4) 
2πσ2 

For zero-mean noise, μ = 0. 
The PDF fW (w), which is assumed to govern the distribution of all the noise samples 

w[k], specifies the probability that W , or equivalently w[k], takes values in the vicinity of 
w. Specifically, 

P(w ≤ w[k] ≤ w + dw) ≈ fW (w) dw . 

More generally, the probability that w[k] is between two values w1 and w2 is given by 

w2 

P(w1 < w[k] ≤ w2) =  fW (w) dw . 
w1 

The reason we use the PDF rather than a discrete histogram is that our noise model is 
inherently “analog”, taking on any real value in (−∞, ∞). For a noise sample that can take 
on any value in a continuous range, the natural mathematical tool to use is a continuous-
domain random variable, described via its PDF, or via the integral of the PDF, which is 
called the cumulative distribution function (CDF). 

It will be helpful to review the basic definitions and properties of continuous-domain 
random variables, especially if you aren’t comfortable with these tools. We have provided 
a brief recap and tutorial in the appendix near the end of this chapter (§9.6). 

• 9.3 Bit Errors 
Noise disrupts the quality of communication between sender and receiver because the re­
ceived noisy voltage samples can cause the receiver to incorrectly identify the transmitted 
bit, thereby generating a bit error. If we transmit a long stream of known bits and count 
the fraction of received bits that are in error, we obtain a quantity that—by the law of large 
numbers—asymptotically approaches the bit error rate (BER), which is the probability that 

X
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any given bit is in error, P(error). This is the probability that noise causes a transmitted “1” 
to be reported as “0” or vice versa. 

Communication links exhibit a wide range of bit error rates. At one end, high-speed 
(multiple gigabits per second) fiber-optic links implement various mechanisms that reduce 
the bit error rates to be as low as 1 in 1012 . This error rate looks exceptionally low, but a 
link that can send data at 10 gigabits per second with such an error rate will encounter a bit 
error every 100 seconds of continuous activity, so it does need ways of masking errors that 
occur. Wireless communication links usually have errors anywhere between 1 in 103 for 
relatively noisy environments, down to to 1 in 107, and in fact allow the communication to 
occur at different bit rates; higher bit rates are usually also associated with higher bit error 
rates. In some applications, very noisy links can still be useful even if they have bit error 
rates as high as 1 in 103 or 102 . 

We now analyze the BER of the simple binary signaling scheme. Recall the receiver 
thresholding rule, assuming that the sender sends V0 volts for “0” and V1 > V0 volts for 
“1” and that there is no channel distortion (so in the absence of noise, the receiver would 
see exactly what the sender transmits): 

If the received voltage sample y < Vt = (V0 + V1)/2 then the received bit is 
reported as “0”; otherwise, it is reported as “1”. 

For simplicity, we will assume that the prior probability of a transmitted bit being a “0” 
is the same as it being a “1”, i.e., both probabilities are 0.5. We will find later that when 
these two prior probabilities are equal, the choice of threshold Vt specified above is the one 
that minimizes the overall probability of bit error for the decision rule that the receiver is 
using. When the two priors are unequal, one can either stick to the same threshold rule 
and calculate the bit error probability, or one could calculate the threshold that minimizes 
the error probability and then calculate the resulting bit error probability. We will deal 
with that case in the next section. 

The noise resilience of the binary scheme turns out to depend only on the difference 
V1 − V0, because the noise is additive. It follows that if the transmitter is constrained to 
a peak voltage magnitude of Vp, then the best choice of voltage levels is V1 = Vp > 0 and 
V0 = −Vp, which corresponds to binary keying. The associated threshold is Vt = 0. This is 
the case that we analyze now. 

As noted earlier, it is conventional to refer to the square of a magnitude as the power, so  
V 2 is the power associated with each voltage sample at the receiver, under the assumption p 
of no distortion, and in the ideal case of no noise. Summing the power of these samples 
over all T samples in the time slot associated with a particular bit sent over the link yields 
the energy per transmitted bit , T · V 2 . It is thus reasonable to also think of V 2 as the p p 
sample energy, which we shall denote by Es. With this notation, the voltage levels in √ √ 
bipolar keying can be written as V1 = +  Es and V0 = − Es. 

Now consider in what cases a bit is incorrectly decided at the receiver. There are two 
mutually exclusive possibilities: 

√ 
1. The sender sends b = 0  at voltage − Es and the value received is > 0; or  

√ 
2. The sender sends b = 1  at voltage + Es and the value received is < 0. 

For a source that is equally likely to send 0’s and 1’s, and given the symmetry of a zero-
mean Gaussian about the value 0, the two events mentioned above have exactly the same proba­
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bilities. Each one of the events has a probability that is half the probability of a zero-mean √ 
Gaussian noise variable W taking values larger than Es (the “half” is because the prob­
ability of b = 0 is 0.5, and similarly for b = 1). Hence the probability of one or the other 
of these mutually exclusive events occurring, i.e., the probability of a bit error, is simply 
the sum of these two probabilities, i.e., the BER is given by the probability of a zero-mean √ 
Gaussian noise variable W taking values larger than Es. The BER is therefore 

∞1 −wBER = P(error) = √ e 
2/(2σ2) dw . (9.5)√

2πσ2 Es 

We will denote 2σ2 by N0. It has already been mentioned that σ2 is a measure of the 
expected power in the underlying AWGN process. However, the quantity N0 is also often 
referred to as the noise power, and we shall use this term for N0 too.1 

After a bit of algebra, Equation (9.5) simplifies to 

∞1 2−vBER = P(error) = √ · √ e dv . (9.6)
π Es/N0 

This equation specifies the tail probability of a Gaussian distribution, which turns out to 
be important in many scientific and engineering applications. It’s important enough to be 
tabulated using two special functions called the error function and the complementary error 
function, denoted erf(z) and erfc(z) = 1− erf(z) respectively, and defined thus: 

z2 2−verf(z) = √ · e dv , (9.7)
π 0 

and ∞2 2−verfc(z) = 1− erf(z) = √ · e dv . (9.8)
π z 

One can now easily write the following important (and pleasingly simple) equation for 
the BER of our simple binary signaling scheme over an AWGN channel: 

f
1 EsBER = P(error) =  erfc( ). (9.9)
2 N0 

Equation (9.9) is worth appreciating and perhaps even committing to memory (at least 
for the duration of the course!). But it is more important to understand how we arrived 
at it and why it makes sense. The BER for our bipolar keying scheme with the specified 
decision rule at the receiver is determined entirely by the ratio Es . The numerator of this N0 
ratio is the power of the signal used to send a bit, or equivalently the power or energy 
Es of the voltage sample selected from the corresponding time slot at the receiver in the 
noise-free case, assuming no distortion (as we are doing throughout this chapter). The 
denominator of the ratio is the noise power N0 encountered during the reception of the 
signal. This ratio is also commonly referred to as the signal-to-noise ratio (SNR) of the 

1The factor of 2 between the two uses of the term arises from the fact that under one notational convention 
the distribution of expected noise power over frequency is examined over both negative and positive frequen­
cies, while under the other convention it is examined over just positive frequencies—but this difference is 
immaterial for us. 

Z
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Source: http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/.
Courtesy of Krishna Sankar Madhavan Pillai. Used with permission.

Figure 9-1: The BER of the simple binary signaling scheme in terms of the erfc function. The chart shows 
the theoretical prediction and simulation results.   

communication scheme. 
The greater the SNR, the lower the BER, and vice versa. Equation (9.9) tells us how the 

two quantities relate to one another for our case, and is plotted in Figure 9-1. The shape of 
this curve is characteristic of the BER v. SNR curves for many signaling and channel coding 
schemes, as we will see in the next few chapters. More complicated signaling schemes will 
have different BER-SNR relationships, but the BER will almost always be a function of the 
SNR. 

• 9.4 BER: The Case of Unequal Priors 
When the prior probability of the sender transmitting a “0” is the same as a “1”, the optimal √ 
digitizing threhold is indeed 0 volts, by symmetry, if a “0” is sent at − Es and a “1” at √ 
+ Es volts. But what happens when a “0” is more likely than a “1”, or vice versa? 

If the threshold remains at 0 volts, then the probability of a bit error is the same as 
Equation (9.9). To see why, suppose the prior probability of a “0” is p0 and a “1” is p1 = 
1− p0. Then, the probability of bit error can be simplified using a calculation similar to the 
previous section to give us 

p0 J p1 J 1 J
P(error) = erfc( Es/N0) + erfc( Es/N0) =  erfc( Es/N0). (9.10)

2 2 2 

This equation is the same as Equation (9.9). It should make intuitive sense: when the 
threshold is 0 volts, the channel has the property that the probability of a “0” becoming a 
“1” is the same as the opposite flip. The probability of a “0” flipping depends only on the 
threshold used and the signal-to-noise ratio, and not on p0 in this case. 

http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/
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Note, however, that when p0   = p1 = 1/2, the optimal digitizing threshold is not 0 (or, 
in general, not half-way between the voltage levels used for a “0” and a “1”). Intuitively, 
if zeroes are more likely than ones, the threshold should actually be greater than 0 volts, 
because the odds of any given bit being 0 are higher, so one might want to “guess” that a 
bit is a “0” even if the voltage level were a little larger than 0 volts. Similarly, if the prior 
probability of a “1” were larger, then the optimal threshold will be lower than 0 volts. 

So what is the optimal digitizing threshold, assuming the receiver uses a single thresh­
old to decide on a bit? Let’s assume it is Vt, then write an equation for the error probability 
(BER) in terms of Vt, differentiate it with respect to Vt, set the derivative to 0, and determine 
the optimal value. One can then also verify the sign of the second derivative to establish 
that the optimal value is indeed a minimum. 

Fortunately, this calculation is not that difficult or cumbersome, because Vt will show 
up in the limit of the integration, so differentiation is straightforward. We will use the 
property that 

∞d d 2 2 2 2−v −zerfc(z) =  √ e dv = −√ e . (9.11)
dz dz π πz 

The equation for the BER is a direct extension of what we wrote earlier in Equation 
(9.10) to the case where we use a threshold Vt instead of 0 volts: 

√ √ (Vt + ) ( )p0 Es p1 Es − Vt
P(error) = erfc √ + erfc √ . (9.12)

2 N0 2 N0 

Using Equation (9.11) to differentiate the RHS of Equation (9.12) and setting it to 0, we 
get the following equation for Vt: 

√ √ −(Vt+ Es)2/N0 + p1e −(Vt− Es)2/N0−p0e = 0. (9.13) 

Solving Equation (9.13) gives us 

N0 p0
Vt = √ · log . (9.14)e

4 Es p1 

It is straightforward to verify by taking the second derivative that this value of Vt does 
indeed minimize the BER. 

One can sanity check a few cases of Equation (9.14). When p0 = p1, we know the answer 
is 0, and we get that from this equation. When p0 increases, we know that the threshold 
should shift toward the positive side, and vice versa, both of which follow from the equa­
tion. Also, when the noise power N0 increases, we expect the receiver to pay less atten­
tion to the received measurement and more attention to the prior (because there is more 
uncertainty in any received sample), and the expression for the threshold does indeed ac­
complish that, by moving the threshold further away from the origin and towards the side 
associated with the less likely bit. 

Note that Equation (9.14) is for the case when a “0” and “1” are sent at voltages sym­
metric about 0. If one had a system where different voltages were used, say V0 and V1, 
then the threshold calculation would have to be done in analogous fashion. In this case, 
the optimal value would be offset from the mid-point, (V0 + V1)/2. 

Z
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Figure 9-2: The dB scale is a convenient log scale; α is the absolute ratio between two energy or power 
quantities in this table. 

• 9.5 Understanding SNR 
The SNR of a communication link is important because it determines the bit error rate; 
later, we will find that an appropriate SNR also determines the capacity of the channel 
(the maximum possible rate at which communication can occur reliably). Because of the 
wide range of energy and power values observed over any communication channel (and 
also in other domains), it is convenient to represent such quantities on a log scale. When 
measured as the ratio of two energy or power quantities, the SNR is defined on a decibel 
scale according to the following formula. 

Let α denote the ratio of two energy or power quantities, such as the energy per sample, 
Es, and the noise power, N0 = 2σ2. Then, we say that the decibel separation corresponding 
to this ratio α is 

SNRdb = 10  · log10 α. (9.15) 

Figure 9-2 shows some values on the dB scale. A convenient rule to remember is that 3 
dB is equivalent to a ratio of about 2, because log10 2 = 0.301. 

The decibel (or dB) scale is widely used in many applications. It goes between −∞ and 
∞, and succinctly captures ratios that may be multiple powers of ten apart. The online 
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Figure 9-3: Histograms become smoother and more continuous when they are made from an increasing

number of samples. In the limit when the number of samples is infinite, the resulting curve is a probability

density function.

problem set has some simple calculations to help you get comfortable with the dB scale.

� 9.6 Appendix: A Brief Recap of Continuous Random Vari-

ables

To understand what a PDF is, let us imagine that we generate 100 or 1000 independent
noise samples and plot each one on a histogram. We might see pictures that look like the
ones shown in Figure 9-3 (the top two pictures), where the horizontal axis is the value of the
noise sample (binned) and the vertical axis is the frequency with which values showed up
in each noise bin. As we increase the number of noise samples, we might see pictures as in
the middle and bottom of Figure 9-3. The histogram is increasingly well approximated by
a continuous curve. Considering the asymptotic behavior as the number of noise samples
becomes very large leads to the notion of a probability density function (PDF).

Formally, let X be the random variable of interest, and suppose X can take on any
value in (−∞,∞). Then, if the PDF of the underlying random variable is the non-negative
function fX(x) ≥ 0, it means that the probability the random variable X takes on a value
between x and x+dx, where dx is a small increment around x, is fX(x) dx. More generally,
the probability that a random variable X lies in the range (x1, x2] is given by

∫ x2

P (x1 < X ≤ x2) = fX(x) dx . (9.16)
x1
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An example of a PDF fX(x) is shown in Figure 9-5.
The PDF is by itself not a probability; the area under any portion of it is a probability.

Though fX(x) itself may exceed 1, the area under any part of it is a probability, and can
never exceed 1. Also, the PDF is normalized to reflect the fact that the probability X takes
some value is always 1, so ∫ ∞

fX(x) dx = 1 .
−∞

Mean The mean μX of a random variable X can be computed from its PDF as follows:

μX =

∫ ∞
xfX(x) dx. (9.17)

−∞

If you think of the PDF as representing a “probability mass” distribution on the real axis,
then the mean is the location of its center of mass; pivoting the real axis at this point will
allow the mass distribution to remain in balance, without tipping to one side or the other.

The law of large numbers states that if x[k] is an iid random process with the underlying
PDF at each time being fX(x), then the sample mean converges to the the mean μX as the
number of samples approaches ∞:

1
lim

K→∞

K−1∑
x[k] = μX . (9.18)

K
k=0

Variance The variance is a measure of spread around the mean, and is defined by

∞
σ2
X =

∫
(x− μX)2fX(x) dx . (9.19)

−∞

(To continue the mass analogy, the variance is analogous to the moment of inertia of the
probability mass. Probability mass that is further away from the center of mass on either
side, i.e., further away from the mean, contributes significantly more to the variance than
mass close to the mean.) Again, under appropriate conditions, the sample variance for an
iid process x[k] converges to the variance. The standard deviation is defined as the square
root of the variance, namely σX .

Cumulative distribution function The integral of the PDF from −∞ to x,

x

FX(x) =

∫
fX(α) dα ,

−∞

is called the cumulative distribution function (CDF), because it represents the cumulative
probability that the random variable takes on a value ≤ x. The CDF increases monotoni-
cally (or, more precisely, is monotonically non-decreasing) from 0 when x=−∞ to 1 when
x = ∞.

Example: Uniform distribution This simple example may help illustrate the idea of a
PDF better, especially for those who haven’t see this notion before. Suppose that a random
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Figure 9-4: PDF of a uniform distribution.

Figure 9-5: PDF of a Gaussian distribution, aka a “bell curve”.

variable X can take on any value between 0 and 2 with equal probability, and always lies
in that range. What is the corresponding PDF?

Because the probability of X being in the range (x,x+ dx) is independent of x as long
as x is in [0,2], it must be the case that the PDF fX(x) is some constant, h, for x ∈ [0,2].
Moreover, it must be 0 for any x outside this range. We need to determine h. To do so,
observe that the PDF must be normalized, so

∫ ∞
fX(x) dx =

∫ 2

h dx = 1, (9.20)
−∞ 0

which implies that h= 0.5. Hence, fX(x) = 0.5 when 0≤ x≤ 2 and 0 otherwise. Figure 9-4
shows this uniform PDF.

One can easily calculate the probability that an x chosen from this distribution lies in
the range (0.3,0.7). It is equal to

∫ 0.7
(0.5) dx = 0.20.3 .

A uniform PDF also provides a simple example that shows how the PDF, fX(x), could
easily exceed 1. A uniform distribution whose values are always between 0 and δ, for some
δ < 1, has fX(x) = 1/δ, which is always larger than 1. To reiterate a point made before: the
PDF fX(x) is not a probability, it is a probability density, and as such, could take on any non-
negative value. The only constraint on it is that the total area under its curve (the integral
over the possible values it can take) is 1.

As an exercise, you might try to determine the PDF, mean and variance of a random
variable that is uniformly distributed in the arbitrary (but finite-length) interval [a, b].
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Figure 9-6: Changing the mean of a Gaussian distribution merely shifts the center of mass of the distribu-

tion because it just shifts the location of the peak. Changing the variance widens the curve.

Example: Gaussian distribution The PDF for a Gaussian random variable X is given by

1
fW (w) = √ 2

e−(x−μX) /(2σ2 )X . (9.21)
2πσ2

X

This equation is plotted in Figure 9-5, which makes evident why a Gaussian distribution
is colloquially referred to as a “bell curve”. The curve tapers off to 0 rapidly because of
the e−x2

dependence. The form of the expression makes clear that the PDF is symmetric
about the value μX , which suffices to deduce that this parameter is indeed the mean of
the distribution. It is an exercise in calculus (which we leave you to carry out, if you are
sufficiently interested in the details) to verify that the area under the PDF is indeed 1 (as it
has to be, for any PDF), and that the variance is in fact the parameter labeled as σ2

X in the
above expression. Thus the Gaussian PDF is completely characterized by the mean and
the variance of the distribution.

Changing the mean simply shifts the distribution to the left or right on the horizontal
axis, as shown in the pictures on the left of Figure 9-6. Increasing the variance is more
interesting from a physical standpoint; it widens (or fattens) the distribution and makes it
more likely for values further from the mean to be selected, compared to a Gaussian with
a smaller variance. A Gaussian random variable with a wider distribution (i.e., a larger
variance) has more “power” compared to a narrower one.
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� Problems and Exercises

1. The cable television signal in your home is poor. The receiver in your home is con-
nected to the distribution point outside your home using two coaxial cables in series,
as shown in the picture below. The power of the cable signal at the distribution point
is P . The power of the signal at the receiver is R.

P 1st cable 
Signal attenuation = 7 dB 

R 2nd cable 
Signal attenuation = 13 dB 

Distribution  
point 

Receiver 

The first cable attenuates (i.e., reduces) the signal power by 7 dB. The second cable
attenuates the signal power by an additional 13 dB. Calculate P

R as a numeric ratio.

2. Ben Bitdiddle studies the bipolar signaling scheme from 6.02 and decides to extend
it to a 4-level signaling scheme, which he calls Ben’s Aggressive Signaling Scheme,
or BASS. In BASS, the transmitter can send four possible signal levels, or voltages:
(−3A,−A,+A,+3A), where A is some positive value. To transmit bits, the sender’s
mapper maps consecutive pairs of bits to a fixed voltage level that is held for some
fixed interval of time, creating a symbol. For example, we might map bits “00” to
−3A, “01” to −A, “10” to +A, and “11” to +3A. Each distinct pair of bits corresponds
to a unique symbol. Call these symbols s minus3, s minus1, s plus1, and s plus3.
Each symbol has the same prior probability of being transmitted.

The symbols are transmitted over a channel that has no distortion but does have ad-
ditive noise, and are sampled at the receiver in the usual way. Assume the samples at
the receiver are perturbed from their ideal noise-free values by a zero-mean additive
white Gaussian noise (AWGN) process with noise intensity N0 = 2σ2, where σ2 is
the variance of the Gaussian noise on each sample. In the time slot associated with
each symbol, the BASS receiver digitizes a selected voltage sample, r, and returns
an estimate, s, of the transmitted symbol in that slot, using the following intuitive
digitizing rule (written in Python syntax):

def digitize(r):
if r < -2A: s = s_minus3
elif r < 0: s = s_minus1
elif r < 2A: s = s_plus1
else: s = s_plus3
return s

Ben wants to calculate the symbol error rate for BASS, i.e., the probability that the
symbol chosen by the receiver was different from the symbol transmitted. Note: we
are not interested in the bit error rate here. Help Ben calculate the symbol error rate
by answering the following questions.

(a) Suppose the sender transmits symbol s plus3. What is the conditional sym-
bol error rate given this information; i.e., what is P(symbol error | s plus3
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sent)? Express your answer in terms of A, N0, and the erfc function, defined
as erfc(z) = 2√ ∞

π

∫
ez
−x2

dx.

(b) Now suppose the sender transmits symbol s plus1. What is the conditional

symbol error rate given this information, in terms of A, N0, and the erfc func-
tion?

(c) The conditional symbol error rates for the other two symbols don’t need to be
calculated separately.

i. The symbol error rate when the sender transmits symbol s minus3 is the
same as the symbol error rate of which of these symbols?

A. s minus1.

B. s plus1.

C. s plus3.

ii. The symbol error rate when the sender transmits symbol s minus1 is the
same as the symbol error rate of which of these symbols?

A. s minus3.

B. s plus1.

C. s plus3.

(d) Combining your answers to the previous parts, what is the symbol error rate in
terms of A, N0, and the erfc function? Recall that all symbols are equally likely
to be transmitted.

3. Bit samples are transmitted with amplitude ATX = ±1 (i.e.bipolar signaling). The
channel attenuation is 20 dB, so the power of any transmitted signal is reduced by
this factor when it arrives at the receiver.

(a) What receiver noise standard deviation value (σ) corresponds to a signal-to-
noise ratio (SNR) of 20 dB at the receiver? (Note that the SNR at the receiver is
defined as the ratio of the received signal power to σ2.)

(b) Express the bit error rate at the receiver in terms of the erfc() function when the
SNR at the receiver is 20 dB.
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(c) Under the conditions of the previous parts of this question, suppose an ampli-
fier with gain of 10 dB is added to the receiver after the signal has been corrupted
with noise. Explain how this amplification affects the bit error rate.

4. Due to inter-symbol interference (ISI), which we will study in the next chapter, the
received signal distribution (probability mass function) without noise looks like in
the diagram below.

(a) Determine the value p marked on the graph above.

(b) Determine the optimal decision threshold Vthreshold, assuming that the prior
probabilities of sending a “0” and a “1”, and the noise standard deviations on
sending a “0” and a “1” are also equal (σ0 = σ1).

(c) Derive the expression for the bit error rate in terms of the erfc() function if σ =

0.025.
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