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CHAPTER 8 
Viterbi Decoding of Convolutional 

Codes 

This chapter describes an elegant and efficient method to decode convolutional codes, 
whose construction and encoding we described in the previous chapter. This decoding 
method avoids explicitly enumerating the 2N possible combinations of N -bit parity bit 
sequences. This method was invented by Andrew Viterbi ’57 and bears his name. 

⌅ 8.1 The Problem 

At the receiver, we have a sequence of voltage samples corresponding to the parity bits 
that the transmitter has sent. For simplicity, and without loss of generality, we will assume 
that the receiver picks a suitable sample for the bit, or averages the set of samples corre­
sponding to a bit, digitizes that value to a “0” or “1” by comparing to the threshold voltage 
(the demapping step), and propagates that bit decision to the decoder. 

Thus, we have a received bit sequence, which for a convolutionally-coded stream cor­
responds to the stream of parity bits. If we decode this received bit sequence with no 
other information from the receiver’s sampling and demapper, then the decoding pro­
cess is termed hard-decision decoding (“hard decoding”). If, instead (or in addition), the 
decoder is given the stream of voltage samples and uses that “analog” information (in 
digitized form, using an analog-to-digital conversion) in decoding the data, we term the 
process soft-decision decoding (“soft decoding”). 

The Viterbi decoder can be used in either case. Intuitively, because hard-decision de­
coding makes an early decision regarding whether a bit is 0 or 1, it throws away infor­
mation in the digitizing process. It might make a wrong decision, especially for voltages 
near the threshold, introducing a greater number of bit errors in the received bit sequence. 
Although it still produces the most likely transmitted sequence given the received bit se­
quence, by introducing additional errors in the early digitization, the overall reduction in 
the probability of bit error will be smaller than with soft decision decoding. But it is con­
ceptually easier to understand hard decoding, so we will start with that, before going on 
to soft decoding. 
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Figure 8-1: The trellis is a convenient way of viewing the decoding task and understanding the time evo­
lution of the state machine. 

As mentioned in the previous chapter, the trellis provides a good framework for under­
standing the decoding procedure for convolutional codes (Figure 8-1). Suppose we have 
the entire trellis in front of us for a code, and now receive a sequence of digitized bits (or 
voltage samples). If there are no errors, then there will be some path through the states 
of the trellis that would exactly match the received sequence. That path (specifically, the 
concatenation of the parity bits “spit out” on the traversed edges) corresponds to the trans­
mitted parity bits. From there, getting to the original encoded message is easy because the 
top arc emanating from each node in the trellis corresponds to a “0” bit and the bottom 
arrow corresponds to a “1” bit. 

When there are bit errors, what can we do? As explained earlier, finding the most likely 
transmitted message sequence is appealing because it minimizes the probability of a bit 
error in the decoding. If we can come up with a way to capture the errors introduced by 
going from one state to the next, then we can accumulate those errors along a path and 
come up with an estimate of the total number of errors along the path. Then, the path with 
the smallest such accumulation of errors is the path we want, and the transmitted message 
sequence can be easily determined by the concatenation of states explained above. 

To solve this problem, we need a way to capture any errors that occur in going through 
the states of the trellis, and a way to navigate the trellis without actually materializing the 
entire trellis (i.e., without enumerating all possible paths through it and then finding the 
one with smallest accumulated error). The Viterbi decoder solves these problems. It is 
an example of a more general approach to solving optimization problems, called dynamic 
programming. Later in the course, we will apply similar concepts in network routing, an 
unrelated problem, to find good paths in multi-hop networks. 
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Figure 8-2: The branch metric for hard decision decoding. In this example, the receiver gets the parity bits 

00. 

⌅ 8.2 The Viterbi Decoder 

The decoding algorithm uses two metrics: the branch metric (BM) and the path metric 
(PM). The branch metric is a measure of the “distance” between what was transmitted and 
what was received, and is defined for each arc in the trellis. In hard decision decoding, 
where we are given a sequence of digitized parity bits, the branch metric is the Hamming 
distance between the expected parity bits and the received ones. An example is shown in 
Figure 8-2, where the received bits are 00. For each state transition, the number on the arc 
shows the branch metric for that transition. Two of the branch metrics are 0, corresponding 
to the only states and transitions where the corresponding Hamming distance is 0. The 
other non-zero branch metrics correspond to cases when there are bit errors. 

The path metric is a value associated with a state in the trellis (i.e., a value associated 
with each node). For hard decision decoding, it corresponds to the Hamming distance with 
respect to the received parity bit sequence over the most likely path from the initial state to 
the current state in the trellis. By “most likely”, we mean the path with smallest Hamming 
distance between the initial state and the current state, measured over all possible paths 
between the two states. The path with the smallest Hamming distance minimizes the total 
number of bit errors, and is most likely when the BER is low. 

The key insight in the Viterbi algorithm is that the receiver can compute the path metric 
for a (state, time) pair incrementally using the path metrics of previously computed states 
and the branch metrics. 

⌅ 8.2.1 Computing the Path Metric 

Suppose the receiver has computed the path metric PM[s, i] for each state s at time step 
i (recall that there are 2K-1 states, where K is the constraint length of the convolutional 
code). In hard decision decoding, the value of PM[s, i] is the total number of bit errors 
detected when comparing the received parity bits to the most likely transmitted message, 
considering all messages that could have been sent by the transmitter until time step i 
(starting from state “00”, which we will take to be the starting state always, by convention). 
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Among all the possible states at time step i, the most likely state is the one with the 
smallest path metric. If there is more than one such state, they are all equally good possi­
bilities. 

Now, how do we determine the path metric at time step i + 1, PM[s, i + 1], for each 
state s? To answer this question, first observe that if the transmitter is at state s at time step 
i +1, then it must have been in only one of two possible states at time step i. These two predecessor 
states, labeled ↵ and (, are always the same for a given state. In fact, they depend only on 
the constraint length of the code and not on the parity functions. Figure 8-2 shows the 
predecessor states for each state (the other end of each arrow). For instance, for state 00, 
↵ = 00 and ( = 01; for state 01, ↵ = 10 and ( = 11. 

Any message sequence that leaves the transmitter in state s at time i + 1  must have left 
the transmitter in state ↵ or state ( at time i. For example, in Figure 8-2, to arrive in state 
’01’ at time i + 1, one of the following two properties must hold: 

1. The transmitter was in state ‘10’ at time i and the ith message bit was a 0. If that is 
the case, then the transmitter sent ‘11’ as the parity bits and there were two bit errors, 
because we received the bits 00. Then, the path metric of the new state, PM[‘01’, i +1] 
is equal to PM[‘10’, i] + 2, because the new state is ‘01’ and the corresponding path 
metric is larger by 2 because there are 2 errors. 

2. The other (mutually exclusive) possibility is that the transmitter was in state ‘11’ at 
time i and the ith message bit was a 0. If that is the case, then the transmitter sent 
01 as the parity bits and there was one bit error, because we received 00. The path 
metric of the new state, PM[‘01’, i + 1] is equal to PM[‘11’, i] + 1.
 

Formalizing the above intuition, we can see that
 

PM[s, i + 1] = min(PM[↵, i] + BM[↵ ! s], PM[(, i] + BM[( ! s]), (8.1) 

where ↵ and ( are the two predecessor states. 
In the decoding algorithm, it is important to remember which arc corresponds to the 

minimum, because we need to traverse this path from the final state to the initial one 
keeping track of the arcs we used, and then finally reverse the order of the bits to produce 
the most likely message. 

⌅ 8.2.2 Finding the Most Likely Path 

We can now describe how the decoder finds the maximum-likelihood path. Initially, state 
‘00’ has a cost of 0 and the other 2K-1 

- 1 states have a cost of 1. 
The main loop of the algorithm consists of two main steps: first, calculating the branch 

metric for the next set of parity bits, and second, computing the path metric for the next 
column. The path metric computation may be thought of as an add-compare-select proce­
dure: 

1.	 Add the branch metric to the path metric for the old state. 
2.	 Compare the sums for paths arriving at the new state (there are only two such paths 

to compare at each new state because there are only two incoming arcs from the 
previous column). 

3.	 Select the path with the smallest value, breaking ties arbitrarily. This path corre­
sponds to the one with fewest errors. 
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Figure 8-3 shows the decoding algorithm in action from one time step to the next. This 
example shows a received bit sequence of 11 10 11 00 01 10 and how the receiver processes 
it. The fourth picture from the top shows all four states with the same path metric. At this 
stage, any of these four states and the paths leading up to them are most likely transmitted 
bit sequences (they all have a Hamming distance of 2). The bottom-most picture shows 
the same situation with only the survivor paths shown. A survivor path is one that has 
a chance of being the maximum-likelihood path; there are many other paths that can be 
pruned away because there is no way in which they can be most likely. The reason why 
the Viterbi decoder is practical is that the number of survivor paths is much, much smaller 
than the total number of paths in the trellis. 

Another important point about the Viterbi decoder is that future knowledge will help it 
break any ties, and in fact may even cause paths that were considered “most likely” at a 
certain time step to change. Figure 8-4 continues the example in Figure 8-3, proceeding un­
til all the received parity bits are decoded to produce the most likely transmitted message, 
which has two bit errors. 

⌅ 8.3 Soft-Decision Decoding 

Hard decision decoding digitizes the received voltage signals by comparing it to a thresh­
old, before passing it to the decoder. As a result, we lose information: if the voltage was 
0.500001, the confidence in the digitization is surely much lower than if the voltage was 
0.999999. Both are treated as “1”, and the decoder now treats them the same way, even 
though it is overwhelmingly more likely that 0.999999 is a “1” compared to the other value. 

Soft-decision decoding (also sometimes known as “soft input Viterbi decoding”) builds 
on this observation. It does not digitize the incoming samples prior to decoding. Rather, it uses 
a continuous function of the analog sample as the input to the decoder. For example, if the 
expected parity bit is 0 and the received voltage is 0.3 V, we might use 0.3 (or 0.32, or some 
such function) as the value of the “bit” instead of digitizing it. 

For technical reasons that will become apparent later, an attractive soft decision metric 
is the square of the difference between the received voltage and the expected one. If the 
convolutional code produces p parity bits, and the p corresponding analog samples are 
v = v

1

, v
2

, . . . , vp, one can construct a soft decision branch metric as follows 

pX
(ui - vi)

2 , (8.2)BMsoft[u, v] =  
i=1 

where u = u
1

, u
2

, . . . , up are the expected p parity bits (each a 0 or 1). Figure 8-5 shows the 
soft decision branch metric for p = 2 when u is 00. 

With soft decision decoding, the decoding algorithm is identical to the one previously 
described for hard decision decoding, except that the branch metric is no longer an integer 
Hamming distance but a positive real number (if the voltages are all between 0 and 1, then 
the branch metric is between 0 and 1 as well). 

It turns out that this soft decision metric is closely related to the probability of the decoding 
being correct when the channel experiences additive Gaussian noise. First, let’s look at the 
simple case of 1 parity bit (the more general case is a straightforward extension). Suppose 



96 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES 

the receiver gets the ith parity bit as vi volts. (In hard decision decoding, it would decode 
- as 0 or 1 depending on whether vi was smaller or larger than 0.5.) What is the probability 
that vi would have been received given that bit ui (either 0 or 1) was sent? With zero-mean 
additive Gaussian noise, the PDF of this event is given by 

-d2/2 2 
ie 

f(vi|ui) =  p , (8.3)
2⇡ 2 

2where di = v if ui = 0  and di = (vi - 1)

2 if ui = 1.i 

The log likelihood of this PDF is proportional to -d2. Moreover, along a path, the PDF i 

of the sequence V = v
1

, v
2

, . . . , vp being received given that a code word U = ui, u2, . . . , up 

was sent, is given by the product of a number of terms each resembling Eq. (8.3). The 
logarithm of this PDF for the path is equal to the sum of the individual log likelihoods, 
and is proportional to -

P
d2 
i . But that’s precisely the negative of the branch metric we i 

defined in Eq. (8.2), which the Viterbi decoder minimizes along the different possible 
paths! Minimizing this path metric is identical to maximizing the log likelihood along 
the different paths, implying that the soft decision decoder produces the most likely path 
that is consistent with the received voltage sequence. 

This direct relationship with the logarithm of the probability is the reason why we chose 
the sum of squares as the branch metric in Eq. (8.2). A different noise distribution (other 
than Gaussian) may entail a different soft decoding branch metric to obtain an analogous 
connection to the PDF of a correct decoding. 

⌅ 8.4 Achieving Higher and Finer-Grained Rates: Puncturing 

As described thus far, a convolutional code achieves a maximum rate of 1/r, where r is 
the number of parity bit streams produced by the code. But what if we want a rate greater 
than 1/2, or a rate between 1/r and 1/(r+ 1) for some r? 

A general technique called puncturing gives us a way to do that. The idea is straight­
forward: the encoder does not send every parity bit produced on each stream, but “punc­
tures” the stream sending only a subset of the bits that are agreed-upon between the en­
coder and decoder. For example, one might use a rate-1/2 code along with the puncturing 
schedule specified as a vector; for example, we might use the vector (101) on the first par­
ity stream and (110) on the second. This notation means that the encoder sends the first 
and third bits but not the second bit on the first stream, and sends the first and second bits 
but not the third bit on the second stream. Thus, whereas the encoder would have sent 
two parity bits for every message bit without puncturing, it would now send four parity 
bits (instead of six) for every three message bits, giving a rate of 3/4. 

In this example, suppose the sender in the rate-1/2 code, without puncturing, emitted 
bits p

0

[0]p
1

[0]p
0

[1]p
1

[1]p
0

[2]p
1

[2] . . .. Then, with the puncturing schedule given, the bits 
emitted would be p

0

[0]p
1

[0] - p
1

[1]p
0

[2] - . . ., where each - refers to an omitted bit. 
At the decoder, when using a punctured code, missing parity bits don’t participate in 

the calculation of branch metrics. Otherwise, the procedure is the same as before. We can 
think of each missing parity bit as a blank (’-’) and run the decoder by just skipping over 
the blanks. 
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⌅ 8.5 Encoder and Decoder Implementation Complexity 

There are two important questions we must answer concerning the time and space com­
plexity of the convolutional encoder and Viterbi decoder. 

1. How much state and space does the encoder need? 

2. How much time does the decoder take? 

The first question is easy to answer: at the encoder, the amount of space is linear in K, 
the constraint length; the time required is linear in the message length, n. The encoder is 
much easier to implement than the Viterbi decoder. The decoding time depends both on 
K and the length of the coded (parity) bit stream (which is linear in n). At each time step, 
the decoder must compare the branch metrics over two state transitions into each state, for 
each of 2(K - 1) states. The number of comparisons required is 2K in each step, giving us 
a total time complexity of O(n · 2K 

) for decoding an n-bit message. 
Moreover, as described thus far, we can decode the first bits of the message only at the 

very end. A little thought will show that although a little future knowledge is useful, it is 
unlikely that what happens at bit time 1000 will change our decoding decision for bit 1, if 
the constraint length is, say, 6. In fact, in practice the decoder starts to decode bits once it 
has reached a time step that is a small multiple of the constraint length; experimental data 
suggests that 5 · K message bit times (or thereabouts) is a reasonable decoding window, 
regardless of how long the parity bit stream corresponding to the message is. 

⌅ 8.6 Designing Good Convolutional Codes 

At this stage, a natural question one might wonder about is, “What makes a set of parity 
equations a good convolutional code?” In other words, is there a systematic method to 
generate good convolutional codes? Or, given two convolutional codes, is there a way to 
analyze their generators and determine how they might perform relative to each other in 
their primary task, which is to enable communication over a noisy channel at as high a 
rate as they can? 

In principle, many factors determine the effectiveness of a convolutional code. One 
would expect the ability of a convolutional code to correct errors depends on the con­
straint length, K, because the larger the constraint length, the greater the degree to which 
any given message bit contributes to some parity bit, and the greater the resilience to bit 
errors. One would also expect the resilience to errors to be higher as the number of gen­
erators (parity streams) increases, because that corresponds to a lower rate (more redun­
dancy). And last but not least, the coefficients of the generators surely have a role to play 
in determining the code’s effectiveness. 

Fortunately, there is one metric, called the free distance of the convolutional code, 
which captures these different axes and is a primary determinant of the error-reducing 
capability of a convolutional code, when hard-decision decoding is used. 

⌅ 8.6.1 Free Distance 

Because convolutional codes are linear, everything we learned about linear codes applies 
here. In particular, the Hamming distance of any linear code, i.e., the minimum Hamming 
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distance between any two valid codewords, is equal to the number of ones in the smallest 
non-zero codeword with minimum weight, where the weight of a codeword is the number of 
ones it contains. 

In the context of convolutional codes, the smallest Hamming distance between any two 
valid codewords is called the free distance. Specifically, the free distance of a convolutional 
code is the difference in path metrics between the all-zeroes output and the path with 
the smallest non-zero path metric going from the initial 00 state to some future 00 state. 
Figure 8-6 illustrates this notion with an example. In this example, the free distance is 4, 
and it takes 8 output bits to get back to the correct state, so one would expect this code 
to be able to correct up to b(4 - 1)/2c = 1  bit error in blocks of 8 bits, if the block starts at 
the first parity bit. In fact, this error correction power is essentially the same as an (8, 4, 3) 
rectangular parity code. Note that the free distance in this example is 4, not 5: the smallest 
non-zero path metric between the initial 00 state and a future 00 state goes like this: 00 ! 
10 ! 11 ! 01 ! 00 and the corresponding path metrics increase as 0 ! 2 ! 2 ! 3 ! 4. 
In the next section, we will find that a small change to the generator—replacing 110 with 
101—makes a huge difference in the performance of the code. 

Why do we define a “free distance”, rather than just call it the Hamming distance, if it 
is defined the same way? The reason is that any code with Hamming distance D (whether 
linear or not) can correct all patterns of up to bD-1 

c errors. If we just applied the same 
2 

notion to convolutional codes, we will conclude that we can correct all single-bit errors in 
the example given, or in general, we can correct some fixed number of errors. 

Now, convolutional coding produces an unbounded bit stream; these codes are 
markedly distinct from block codes in this regard. As a result, the bD-1 

c formula is not 
2 

too instructive because it doesn’t capture the true error correction properties of the code. 
A convolutional code (with Viterbi decoding) can correct t = bD-1 

c errors as long as these 
2 

errors are “far enough apart”. So the notion we use is the free distance because, in a sense, 
errors can keep occurring and as long as no more than t of them occur in a closely spaced 
burst, the decoder can correct them all. 

⌅ 8.6.2 Selecting Good Convolutional Codes 

The free distance concept also provides a way to construct good convolutional codes. 
Given a decoding budget (e.g., hardware resources), one first determines an appropri­
ate bound on K. Then, one picks an upper bound on r depending on the maximum rate. 
Given a specific K and r, there is a finite number of generators that are feasible. One can 
write a program to exhaustively go through all feasible combinations of generators, com­
pute the free distance, and pick the code (or codes) with the largest free distance. The 
convolutional code is specified completely by specifying the generators (both K and r are 
implied if one lists the set of generators). 

⌅ 8.7 Comparing the Error-Correction Performance of Codes 

This section discusses how to compare the error-correction performance of different codes 
and discusses simulation results obtained by implementing different codes and evaluat­
ing them under controlled conditions. We have two goals in this section: first, to describe 
the “best practices” in comparing codes and discuss common pitfalls, and second, to com­
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pare some specific convolutional and block codes and discuss the reasons why some codes 
perform better than others. 

There are two metrics of interest. The first is the bit error rate (BER) after decoding, 
which is sometimes also known as the probability of decoding error. The second is the rate 
achieved by the code. For both metrics, we are interested in how they vary as a function 
of the channel’s parameters, such as the value of " in a BSC (i.e., the channel’s underlying 
bit error probability) or the degree of noise on the channel (for a channel with additive 
Gaussian noise, which we will describe in detail in the next chapter). 

Here, we focus only on the post-decoding BER of a code. 

⌅ 8.7.1 Post-decoding BER over the BSC 

For the BSC, the variable is ", and one can ask how different codes perform (in terms of the 
BER) as we vary ". Figure 8-7 shows the post-decoding BER of a few different linear block 
codes and convolutional codes as a function of the BSC error rate, ". From this graph, it 
would appear that the rate-1/3 repetition code (3, 1) with a Hamming distance of 3 is the 
most robust code at high BSC error probabilities (right-side of the picture), and that the 
two rate-1/2 convolutional codes are very good ones at other BERs. It would also appear 
from this curve that the (7, 4) and (15, 11) Hamming codes are inferior to the other codes. 

The problem with these conclusions is that they don’t take the rate of the code into 
account; some of these codes incur much higher overhead than the others. As such, on a 
curve such as Figure 8-7 that plots the post-decoding BER against the BSC error probability, 
it is sensible only to compare codes of the same rate. Thus, one can compare the (8, 4) block 
code to the three other convolutional code, and form the following conclusions: 

1. The two best convolutional codes,	 (3, (7, 5)) (i.e., with generators (111, 101)) and 
(4, (14, 13)) (i.e., with generators (1110, 1101)), perform the best. Both these codes 
handily beat the third convolutional code, (3, (7, 6)), which we picked from Buss­
gang’s paper on generating good convolutional codes.1 

The reason for the superior performance of the (3, (7, 5)) and (4, (14, 13)) codes is 
that they have a greater free distance (5 and 6 respectively) than the (3, (7, 6)) code 
(whose free distance is 4). The greater free distance allows for a larger number of 
closely-spaced errors to be corrected. 

2. Interestingly,	 these results show that the (3, (7, 5)) code with free distance 5 is 
stronger than the (4, (14, 13)) code with free distance 6. The reason is that the num­
ber of trellis edges to go from state 00 back to state 00 in the (3, (7, 5)) case is only 
3, corresponding to a group of 6 consecutive coded bits. The relevant state transi­
tions are 00 ! 10 ! 01 ! 00 and the corresponding path metrics are 0 ! 2 ! 3 ! 5. 
In contrast, the (1110, 1101) code has a slightly bigger free distance, but it takes 7 
trellis edges to achieve that (000 ! 100 ! 010 ! 001 ! 000), meaning that the code 
can correct up to 2 bit errors in sliding windows of length 2 · 4 = 8  bits. Moreover, 
an increase in the free distance from 5 to 6 (an even number) does not improve the 
error-correcting power of the code. 

1Julian Bussgang, “Some Properties of Binary Convolutional Code Generators,” IEEE Transactions on In­
formation Theory, pp. 90–100, Jan. 1965. 
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3. The post-decoding BER is roughly the same for the (8, 4) rectangular parity code and 
the (3, (111, 110)) convolutional code. The reason is that the free distance of the K = 3  
convolutional code is 4, which means it can correct one bit error over blocks that are 
similar in length to the rectangular parity code we are comparing with. Intuitively, 
both schemes essentially produce parity bits that are built from similar amounts of 
history. In the rectangular parity case, the row parity bit comes from two succes­
sive message bits, while the column parity comes from two message bits with one 
skipped in between. But we also send the message bits, so we’re mimicking a similar 
constraint length (amount of memory) to the K = 3  convolutional code. The bottom 
line is that (3, (111, 110)) is not such a good convolutional code. 

4. The (7, 4) Hamming code performs similarly to the (8, 4) rectangular parity code, 
but it has a higher code rate (4/7 versus 1/2), which means it provides the same 
correction capabilities with lower overhead. One may therefore conclude that it is a 
better code than the (8, 4) rectangular parity code. 

But how does one go about comparing the post-decoding BER of codes with different 
rates? We need a way to capture the different amounts of redundancy exhibited by codes 
of different rates. To do that, we need to change the model to account for what happens 
at the physical (analog) level. A standard way of handling this issue is to use the signal-
to-noise ratio (SNR) as the control variable (on the x-axis) and introduce Gaussian noise 
to perturb the signals sent over the channel. The next chapter studies this noise model 
in detail, but here we describe the basic intuition and results obtained when comparing 
the performance of codes under this model. This model is also essential to understand 
the benefits of soft-decision decoding, because soft decoding uses the received voltage 
samples directly as input to the decoder without first digitizing each sample. The question 
is how much gain we observe by doing soft-decision decoding compared to hard-decision 
decoding. 

⌅ 8.7.2 Gaussian Noise Model and the Eb/N0 Concept 

Consider a message k bits long. We have two codes: C
1 has rate k/n

1 and C
2 has rate k/n

2

, 
and suppose n

2 > n
1

. Hence, for the k-bit message, when encoded with C
1

, we transmit 
n
1 bits, and when encoded with C

2

, we transmit n
2 bits. Clearly, using C

2 consumes more 
resources because it uses the channel more often than C

1

. 
An elegant way to account for the greater resource consumption of C

1 is to run an 
experiment where each “1” bit is mapped to a certain voltage level, V

1

, and each “0” is 
mapped to a voltage V

0

. For reasons that will become apparent in the next chapter, what 
matters for decoding is the difference in separation between the voltages, V

1 - V
0

, and 
not their actual values, so we can assume that the two voltages are centered about 0. For 

p p

convenience, assume V
1 = Es and V

0 = - Es, where Es is the energy per sample. The 
energy, or power, is proportional to the square of the voltage of used. 

Now, when we use code C
1

, k message bits get tranformed to n
1 coded bits. Assum­

ing that each coded bit is sent as one voltage sample (for simplicity), the energy per bit is 
equal to n

1

/k · Es. Similarly, for code C
2

, it is equal to n
2

/k · Es. Each voltage sample in 
the additive Gaussian noise channel model (see the next chapter) is perturbed according 
to a Gaussian distribution with some variance; the variance is the amount of noise (the 
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greater the variance, the greater the noise, and the greater the bit-error probability of the 
equivalent BSC). Hence, the correct “scaled” x-axis for comparing the post-decoding BER 
of codes of different rates is Eb/N0

, the ratio of the energy-per-message-bit to the channel 
Gaussian noise. 

Figure 8-8 shows some representative performance results of experiments done over a 
simulated Gaussian channel for different values of Eb/N0

. Each data point in the experi­
ment is the result of simulating about 2 million message bits being encoded and transmit­
ted over a noisy channel. The top-most curve shows the uncoded probability of bit error. 
The x axis plots the Eb/N0 on the decibel (dB) scale, defined in Chapter 9 (lower noise is 
toward the right). The y axis shows the probability of a decoding error on a log scale. 

Some observations from these results are noteworthy: 

1. Good convolutional codes are noticeably superior to the Hamming and rectangular 
parity codes. 

2. Soft-decision decoding is a significant win over hard-decision decoding; for the same 
post-decoding BER, soft decoding has a 2 to 2.3 db gain; i.e., with hard decoding, you 
would have to increase the signal-to-noise ratio by that amount (which is a factor of 
1.6⇥, as explained in Chapter 9) to achieve the same post-decoding BER. 

⌅ 8.8 Summary 

From its relatively modest, though hugely impactful, beginnings as a method to decode 
convolutional codes, Viterbi decoding has become one of the most widely used algorithms 
in a wide range of fields and engineering systems. Modern disk drives with “PRML” 
technology to speed-up accesses, speech recognition systems, natural language systems, 
and a variety of communication networks use this scheme or its variants. 

In fact, a more modern view of the soft decision decoding technique described in this 
lecture is to think of the procedure as finding the most likely set of traversed states in 
a Hidden Markov Model (HMM). Some underlying phenomenon is modeled as a Markov 
state machine with probabilistic transitions between its states; we see noisy observations 
from each state, and would like to piece together the observations to determine the most 
likely sequence of states traversed. It turns out that the Viterbi decoder is an excellent 
starting point to solve this class of problems (and sometimes the complete solution). 

On the other hand, despite its undeniable success, Viterbi decoding isn’t the only way 
to decode convolutional codes. For one thing, its computational complexity is exponential 
in the constraint length, K, because it does require each of these states to be enumerated. 
When K is large, one may use other decoding methods such as BCJR or Fano’s sequential 
decoding scheme, for instance. 

Convolutional codes themselves are very popular over both wired and wireless links. 
They are sometimes used as the “inner code” with an outer block error correcting code, 
but they may also be used with just an outer error detection code. They are also used 
as a component in more powerful codes like turbo codes, which are currently one of the 
highest-performing codes used in practice. 
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⌅ Problems and Exercises 

1. Consider a convolutional code whose parity equations are 

p
0

[n] =  x[n] +  x[n - 1] + x[n - 3] 

p
1

[n] =  x[n] +  x[n - 1] + x[n - 2] 

p
2

[n] =  x[n] +  x[n - 2] + x[n - 3] 

(a) What is the rate of this code? How many states are in the state machine repre­
sentation of this code? 

(b) Suppose the decoder reaches the state “110” during the forward pass of the 
Viterbi algorithm with this convolutional code. 

i. How many predecessor states (i.e., immediately preceding states) does state 
“110” have? 

ii. What are the bit-sequence representations of the predecessor states of state 
“110”? 

iii. What are the expected parity bits for the transitions from each of these pre­
decessor states to state “110”? Specify each predecessor state and the ex­
pected parity bits associated with the corresponding transition below. 

(c) To increase the rate of the given code, Lem E. Tweakit punctures the p
0 parity 

stream using the vector (1 0 1 1 0), which means that every second and fifth bit 
produced on the stream are not sent. In addition, she punctures the p

1 parity 
stream using the vector (1 1 0 1 1). She sends the p

2 parity stream unchanged. 
What is the rate of the punctured code? 

2. Let conv encode(x) be the resulting bit-stream after encoding bit-string x with a 
convolutional code, C. Similarly, let conv decode(y) be the result of decoding y 
to produce the maximum-likelihood estimate of the encoded message. Suppose we 
send a message M using code C over some channel. Let P = conv encode(M) and 
let R be the result of sending P over the channel and digitizing the received samples 
at the receiver (i.e., R is another bit-stream). Suppose we use Viterbi decoding on 
R, knowing C, and find that the maximum-likelihood estimate of M is Mˆ . During 
the decoding, we find that the minimum path metric among all the states in the final 
stage of the trellis is D

min

. 

D
min is the Hamming distance between and . Fill in the 

blanks, explaining your answer. 

3. Consider the trellis in Figure 8-9 showing the operation of the Viterbi algorithm us­
ing a hard branch metric at the receiver as it processes a message encoded with a 
convolutional code, C. Most of the path metrics have been filled in for each state at 
each time and the predecessor states determined by the Viterbi algorithm are shown 
by a solid transition arrow. 
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(a) What is the code rate of C?

(b) What is the constraint length of C?

(c) What bits would be transmitted if the message 1011 were encoded using C?
Note this is not the message being decoding in the example above.

(d) Compute the missing path metrics in the top two boxes of rightmost column
and enter their value in the appropriate boxes in the trellis diagram (Figure 8-
9). Remember to draw the solid transition arrow showing the predecessor state
for each metric you compute.

(e) The received parity bits for time 5 are missing from the trellis diagram. What
values for the parity bits are consistent with the other information in the trellis?
Note that there may be more than one set of such values.

(f) In the trellis diagram shown (Figure 8-9), circle the states along the most-likely
path through the trellis. Determine the decoded message that corresponds to
that most-likely path.

(g) Based on your answer to the previous part, how many bit errors were detected
in the received transmission and at what time(s) did those error(s) occur?

4. Convolutionally yours. Dona Ferentes is debugging a Viterbi decoder for her client,
The TD Company, which is building a wireless network to send gifts from mobile
phones. She picks a rate-1/2 code with constraint length 4, no puncturing. Parity
stream p

0

has the generator g
0

= 1110. Parity stream p
1

has the generator g
1

= 1xyz,
but she needs your help determining x, y, z, as well as some other things about the
code. In these questions, each state is labeled with the most-recent bit on the left and
the least-recent bit on the right.

These questions are about the state transitions and generators.

(a) From state 010, the possible next states are and .

From state 010, the possible predecessor states are and .

(b) Given the following facts, find g
1

, the generator for parity stream p
1

. g
1

has the
form 1xyz, with the standard convention that the left-most bit of the generator
multiplies the most-recent input bit.

Starting at state 011, receiving a 0 produces p
1

= 0.
Starting at state 110, receiving a 0 produces p

1

= 1.
Starting at state 111, receiving a 1 produces p

1

= 1.

(c) Dona has just completed the forward pass through the trellis and has figured
out the path metrics for all the end states. Suppose the state with smallest path
metric is 110. The traceback from this state looks as follows:

000 100 010 001 100 110

What is the most likely transmitted message? Explain your answer, and if there
is not enough information to produce a unique answer, say why.
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(d) During the decoding process, Dona observes the voltage pair (0.9,0.2) volts for
the parity bits p

0

p
1

, where the sender transmits 1.0 volts for a “1” and 0.0 volts
for a “0”. The threshold voltage at the decoder is 0.5 volts. In the portion of the
trellis shown below, each edge shows the expected parity bits p

0

p
1

. The number
in each circle is the path metric of that state.

i. See Figure 8-10. With hard-decision decoding, give the branch metric near
each edge and the path metric inside the circle.

ii. See Figure 8-10. Timmy Dan (founder of TD Corp.) suggests that Dona use
soft-decision decoding using the squared Euclidean distance metric. Give
the branch metric near each edge and the path metric inside the circle.

iii. If we used a puncturing schedule of (1 1 0 1) on the first parity stream and
(0 1 1 0) on the second parity stream, then what is the rate of the resulting
punctured code?

(e) The real purpose behind Dona Ferentes decoding convolutionally is some awful
wordplay with Virgil’s classical Latin. What does Timeo Danaos et dona ferentes
mean?

i. Timmy Dan and Dona are friends.
ii. It’s time to dance with Dona Ferentes.

iii. I fear the Greeks, even those bearing gifts.
iv. I fear the Greeks, especially those bearing debt.
v. You *#@$*@!#s. This is the last straw; I’m reporting you to the Dean. If I’d

wanted to learn this, I’d have gone to that school up the Charles!
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Figure 8-3: The Viterbi decoder in action. This picture shows four time steps. The bottom-most picture is
the same as the one just before it, but with only the survivor paths shown.



106 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

Figure 8-4: The Viterbi decoder in action (continued from Figure 8-3. The decoded message is shown. To
produce this message, start from the final state with smallest path metric and work backwards, and then
reverse the bits. At each state during the forward pass, it is important to remeber the arc that got us to this
state, so that the backward pass can be done properly.
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Figure 8-5: Branch metric for soft decision decoding.
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The free distance is the difference in path metrics between the all-zeroes output  
and the path with the smallest non-zero path metric going from the initial 00 state  
to some future 00 state.  It is 4 in this example.  The path 00 � 10 �01 � 00 has 

a shorter length, but a higher path metric (of 5), so it is not the free distance. 

Figure 8-6: The free distance of a convolutional code.
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Figure 8-7: Post-decoding BER v. BSC error probability " for different codes. Note that not all codes have
the same rate, so this comparison is misleading. One should only compare curves of the same rate on a
BER v. BSC error probability curve such as this one; comparisons between codes of different rates on the
x-axis given aren’t meaningful because they don’t account for the different overhead amounts.

Figure 8-8: Post-decoding BER of a few different linear block codes and convolutional codes as a function
of E

b

/N0 in the additive Gaussian noise channel model.
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Figure 8-9: Figure for Problem 3.
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Figure 8-10: Figure for Problem 4.
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