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CHAPTER 5 
Coping with Bit Errors using Error 

Correction Codes 

Recall our main goal in designing digital communication networks: to send information 
reliably and efficiently between nodes. Meeting that goal requires the use of techniques 
to combat bit errors, which are inevitable in both commmunication channels and storage 
media (storage may be viewed as “communication across time”; you store something now 
and usually want to be able to retrieve it later). 

The key idea we will apply to achieve reliable communication is the addition of redun­
dancy to the transmitted data, to improve the probability that the original message can be 
reconstructed from the possibly corrupted data that is received. The sender has an encoder 
whose job is to take the message and process it to produce the coded bits that are then sent 
over the channel. The receiver has a decoder whose job is to take the received (coded) bits 
and to produce its best estimate of the message. The encoder-decoder procedures together 
constitute channel coding; good channel codes provide error correction capabilities that 
reduce the bit error rate (i.e., the probability of a bit error). 

With proper design, full error correction may be possible, provided only a small num­
ber of errors has occurred. Even when too many errors have occurred to permit correction, 
it may be possible to perform error detection. Error detection provides a way for the re­
ceiver to tell (with high probability) if the message was decoded correctly or not. Error 
detection usually works by the sender and receiver using a different code from the one 
used to correct errors; common examples include the cyclic redundancy check (CRC) or hash 
functions. These codes take n-bit messages and produce a compact “signature” of that mes­
sage that is much smaller than the message (e.g., the popular CRC-32 scheme produces a 
32-bit signature of an arbitrarily long message). The sender computes and transmits the 
signature along with the message bits, usually appending it to the end of the message. The 
receiver, after running the decoder to correct errors, then computes the signature over its 
estimate of the message bits and compares that signature to its estimate of the signature 
bits in the received data. If the computed and estimated signatures are not equal, then 
the receiver considers the message to have one or more bit errors; otherwise, it assumes 
that the message has been received correctly. This latter assumption is probabilistic: there 
is some non-zero (though very small, for good signatures) probability that the estimated 
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and computed signatures match, but the receiver’s decoded message is different from the 
sender’s. If the signatures don’t match, the receiver and sender may use some higher-layer 
protocol to arrange for the message to be retransmitted; we will study such schemes later. 
We will not study error detection codes like CRC or hash functions in this course. 

Our plan for this chapter is as follows. To start, we will assume a binary symmetric 
channel (BSC). In a BSC, the probability of any given bit “flipping” (a 0 sent over the 
channel is received as a 1, or vice versa) is ", independent of all other bits. Then, we will 
discuss and analyze an elementary redundancy scheme called a repetition code, which will 
simply make n copies of any given bit. The repetition code has a code rate of 1/n—that 
is, for every useful message bit, we end up transmitting n total bits. The overhead of the 
repetition code of rate n is 1 - 1/n, which is rather high for the error correcting power of 
the code. We will then turn to the key ideas that allow us to build powerful codes capable 
of correcting errors without such a high overhead (or equivalently, capable of correcting 
far more errors at a given code rate compared to the repetition code). 

There are two big, inter-related ideas used in essentially all error correction codes. The 
first is the notion of embedding, where the messages one wishes to send are placed in a 
geometrically pleasing way in a larger space so that the distance between any two valid 
points in the embedding is large enough to enable the correction and detection of errors. 
The second big idea is to use parity calculations, which are linear functions over the bits 
we wish to send, to generate the redundancy in the bits that are actually sent. We will 
study examples of embeddings and parity calculations in the context of two classes of 
codes: linear block codes (which are an instance of the broad class of algebraic codes) 
and convolutional codes (which are perhaps the simplest instance of the broad class of 
graphical codes). 

We start with a brief discussion of bit errors. 

⌅ 5.1 Bit Errors and BSC 

A BSC is characterized by one parameter, ", which we can assume to be < 1/2, the proba­
bility of a bit error. It is a natural discretization of a noise model over signals (a common 
model for noise, as we will see in Chapter 9, is additive Gaussian noise, which is also 
a single-parameter model fully characterized by the variance, (2). We can determine " 
empirically by noting that if we send N bits over the channel, the expected number of 
erroneously received bits is N · ". By sending a long known bit pattern and counting the 
fraction or erroneously received bits, we can estimate ", thanks to the law of large numbers. 
In practice, even when the BSC is a reasonable error model, the range of " could be rather 
large, between 10-2 (or even higher) all the way to 10-10 or even 10-12 . A value of " of 
about 10-2 means that messages longer than a 100 bits will see at least one error on aver­
age; given that the typical unit of communication over a channel (a “packet”) is generally 
between 500 bits and 12000 bits (or more, in some networks), such an error rate is too high. 

But is " of 10-12 small enough that we don’t need to bother about doing any error 
correction? The answer often depends on the data rate of the channel. If the channel has 
a rate of 10 Gigabits/s (available today even on commodity server-class computers), then 
the “low” " of 10-12 means that the receiver will see one error every 10 seconds on average 
if the channel is continuously loaded. Unless we include some mechanisms to mitigate 
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the situation, the applications using the channel may find errors occurring too frequently. 
On the other hand, an " of 10-12 may be fine over a communication channel running at 10 
Megabits/s, as long as there is some way to detect errors when they occur. 

In the BSC model, a transmitted bit b (0 or 1) is interpreted by the receiver as 1 - b 
with probability " and as b with probability 1 - ". In this model, each bit is corrupted 
independently and with equal probability (which makes this an “iid” random process, 
for “independent and identically distributed”). We call " the bit-flip probability or the “error 
probability”, and sometimes abuse notation and call it the “bit error rate” (it isn’t really 
a “rate”, but the term is still used in the literature). Given a packet of size S bits, it is 
straightforward to calculate the probability of the entire packet being received correctly 
when sent over a BSC with bit-flip probability ": 

SP(packet received correctly) = (1- ") . 

The packet error probability, i.e., the probability of the packet being incorrect, is 1 minus 
this quantity, because a packet is correct if and only if all its bits are correct. 

Hence, 
SP(packet error) = 1- (1- ") . (5.1) 

When "  <<  1, a simple first-order approximation of the PER is possible because (1 + 
Nx) ⇡ 1 +Nx  when |x| << 1. That approximation gives the pleasing result that, when 

"  <<  1, 
P(packet error) ⇡ 1- (1- S") = S". (5.2) 

The BSC is perhaps the simplest discrete channel model that is realistic, but real-world 
channels exhibit more complex behaviors. For example, over many wireless and wired 
channels as well as on storage media (like CDs, DVDs, and disks), errors can occur in 
bursts. That is, the probability of any given bit being received wrongly depends on recent 
history: the probability is higher if the bits in the recent past were received incorrectly. Our 
goal is to develop techniques to mitigate the effects of both the BSC and burst errors. We’ll 
start with techniques that work well over a BSC and then discuss how to deal with bursts. 

⌅ 5.2 The Simplest Code: Repetition 

In general, a channel code provides a way to map message words to codewords (analogous 
to a source code, except here the purpose is not compression but rather the addition of 
redundancy for error correction or detection). In a repetition code, each bit b is encoded as 
n copies of b, and the result is delivered. If we consider bit b to be the message word, then 
the corresponding codeword is bn (i.e., bb...b, n times). In this example, there are only two 
possible message words (0 and 1) and two corresponding codewords. The repetition code 
is absurdly simple, yet it’s instructive and sometimes even useful in practice! 

But how well does it correct errors? To answer this question, we will write out the 
probability of overcoming channel errors for the BSC error model with the repetition code. 
That is, if the channel independently corrupts each bit with probability ", what is the prob­
ability that the receiver decodes the received codeword correctly to produce the message 
word that was sent? 

The answer depends on the decoding method used. A reasonable decoding method is 
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Figure 5-1: Probability of a decoding error with the repetition code that replaces each bit b with n copies of 

b. The code rate is 1/n. 

maximum likelihood decoding: given a received codeword, r, which is some n-bit combina­
tion of 0’s and 1’s, the decoder should produce the most likely message that could have 
caused r to be received. Since the BSC error probability, ", is smaller than 1/2, the most 
likely option is the codeword that has the most number of bits in common with r. This 
decoding rule results in the minimum probability of error when all messages are equally 
likely. 

Hence, the decoding process is as follows. First, count the number of 1’s in r. If there are 
more than n/2 1’s, then decode the message as 1. If there are more than n/2 0’s, then decode 
the message as 0. When n is odd, each codeword will be decoded unambiguously. When 
n is even, and has an equal number of 0’s and 1’s, the decoder can’t really tell whether the 
message was a 0 or 1, and the best it can do is to make an arbitrary decision. (We have 
assumed that the a priori probability of sending a message 0 is the same as that of sending 
a 1.) 

We can write the probability of decoding error for the repetition code as follows, taking 
care to write the limits of the summation correctly: 

( Pn (
n
)
"i(1 - ")n-i if n oddi=d n 

2 e iP (decoding error) =  (5.3)Pn 
n 

(
n
)
"i(1 - ")n-i 

+ 1 
( 

n )"n/2(1 - ")n/2 if n eveni= +1 i 2 n/22 

The notation 
(
n
) 

denotes the number of ways of selecting i objects (in this case, bit posi­i 
tions) from n objects. 

When n is even, we add a term at the end to account for the fact that the decoder has a 
fifty-fifty chance of guessing correctly when it receives a codeword with an equal number 
of 0’s and 1’s. 
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Figure 5-1 shows the probability of decoding error as a function of the repetition factor, 
n, for the repetition code, computed using Equation (5.3). The y-axis is on a log scale, and 
the probability of error is more or less a straight line with negative slope (if you ignore 
the flat pieces), which means that the decoding error probability decreases exponentially 
with the code rate. It is also worth noting that the error probability is the same when 
n = 2` as when n = 2` - 1. The reason, of course, is that the decoder obtains no additional 
information that it already didn’t know from any 2` - 1 of the received bits. 

Despite the exponential reduction in the probability of decoding error as n increases, 
the repetition code is extremely inefficient in terms of the overhead it incurs, for a given 
rate, 1/n. As such, it is used only in situations when one is not concerned with the over­
head of communication or storage (i.e., the resources consumed), and/or one is unable to 
implement a more complex decoder in the system. 

We now turn to developing more sophisticated codes. There are two big related ideas: 
embedding messages into spaces in a way that achieves structural separation and parity (linear) 
computations over the message bits. 

⌅ 5.3 Embeddings and Hamming Distance 

Let’s start our investigation into error correction by examining the situations in which 
error detection and correction are possible. For simplicity, we will focus on single-error 
correction (SEC) here. By that we mean codes that are guaranteed to produce the correct 
message word, given a received codeword with zero or one bit errors in it. If the received 
codeword has more than one bit error, then we can make no guarantees (the method might 
return the correct message word, but there is at least one instance where it will return the 
wrong answer). 

nThere are 2 possible n-bit strings. Define the Hamming distance (HD) between two n-
bit words, w

1 and w
2

, as the number of bit positions in which the messages differ. Thus 
0  HD(w

1

,w
2

)  n. 
Suppose that HD(w

1

,w
2

) = 1. Consider what happens if we transmit w
1 and there’s 

a single bit error that inconveniently occurs at the one bit position in which w
1 and w

2 

differ. From the receiver’s point of view it just received w
2

—the receiver can’t detect the 
difference between receiving w

1 with a unfortunately placed bit error and receiving w
2

. 
In this case, we cannot guarantee that all single bit errors will be corrected if we choose a 
code where w

1 and w
2 are both valid codewords. 

What happens if we increase the Hamming distance between any two valid codewords 
to 2? More formally, let’s restrict ourselves to only sending some subset S = {w

1

,w
2

, ...,ws}

of the 2n possible words such that 

HD(wi,wj ) � 2 for all wi,wj 2 S where i 6= j (5.4) 

Thus if the transmission of wi is corrupted by a single error, the result is not an element 
of S and hence can be detected as an erroneous reception by the receiver, which knows 
which messages are elements of S . A simple example is shown in Figure 5-2: 00 and 11 are 
valid codewords, and the receptions 01 and 10 are surely erroneous. 

We define the minimum Hamming distance of a code as the minimum Hamming distance 
between any two codewords in the code. From the discussion above, it should be easy to 
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Figure 5-2: Codewords separated by a Hamming distance of 2 can be used to detect single bit errors. The 

codewords are shaded in each picture. The picture on the left is a (2,1) repetition code, which maps 1-bit 
messages to 2-bit codewords. The code on the right is a (3,2) code, which maps 2-bit messages to 3-bit 
codewords. 

see what happens if we use a code whose minimum Hamming distance is D. We state the 
property formally: 

Theorem 5.1 A code with a minimum Hamming distance of D can detect any error pattern of 
D - 1 or fewer errors. Moreover, there is at least one error pattern with D errors that cannot be 
detected reliably. 

Hence, if our goal is to detect errors, we can use an embedding of the set of messages we 
wish to transmit into a bigger space, so that the minimum Hamming distance between any 
two codewords in the bigger space is at least one more than the number of errors we wish 
to detect. (We will discuss how to produce such embeddings in the subsequent sections.) 

But what about the problem of correcting errors? Let’s go back to Figure 5-2, with S = 
{00,11}. Suppose the received sequence is 01. The receiver can tell that a single error has 
occurred, but it can’t tell whether the correct data sent was 00 or 11—both those possible 
patterns are equally likely under the BSC error model. 

Ah, but we can extend our approach by producing an embedding with more space 
between valid codewords! Suppose we limit our selection of messages in S even further, 
as follows: 

HD(wi,wj ) � 3 for all wi,wj 2 S where i 6 (5.5)= j 

How does it help to increase the minimum Hamming distance to 3? Let’s define one 
more piece of notation: let Ew

i be the set of messages resulting from corrupting wi with a 
single error. For example, E

000 = {001,010,100}. Note that HD(wi,an element of Ew
i ) = 1. 

With a minimum Hamming distance of 3 between the valid codewords, observe that 
there is no intersection between Ew

i and Ew
j when i 6 Why is that? Suppose there = j. 

was a message wk that was in both Ew
i and Ew

j . We know that HD(wi,wk) = 1  and 
HD(wj ,wk) = 1, which implies that wi and wj differ in at most two bits and consequently 
HD(wi,wj )  2. (This result is an application of Theorem 5.2 below, which states that the 
Hamming distance satisfies the triangle inequality.) That contradicts our specification that 
their minimum Hamming distance be 3. So the Ew

i don’t intersect. 
So now we can correct single bit errors as well: the received message is either a member 
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of S (no errors), or is a member of some particular Ew
i (one error), in which case the receiver 

can deduce the original message was wi. Here’s a simple example: let S = {000, 111}. 
So E

000 = {001, 010, 100} and E
111 = {110, 101, 011} (note that E

000 doesn’t intersect E
111

). 
Suppose the received sequence is 101. The receiver can tell there has been a single error 
because 101 2/ S . Moreover it can deduce that the original message was most likely 111 
because 101 2 E

111

. 
We can formally state some properties from the above discussion, and specify the error-

correcting power of a code whose minimum Hamming distance is D. 

Theorem 5.2 The Hamming distance between n-bit words satisfies the triangle inequality. That 
is, HD(x, y) +  HD(y, z) � HD(x, z). 

Theorem 5.3 For a BSC error model with bit error probability < 1/2, the maximum likelihood de­
coding strategy is to map any received word to the valid codeword with smallest Hamming distance 
from the received one (ties may be broken arbitrarily). 

Theorem 5.4 A code with a minimum Hamming distance of D can correct any error pattern of 
b

D-1 
c or fewer errors. Moreover, there is at least one error pattern with bD-1 

c + 1  errors that 
2 2 

cannot be corrected reliably. 

Equation (5.5) gives us a way of determining if single-bit error correction can always 
be performed on a proposed set S of transmission messages—we could write a program 
to compute the Hamming distance between all pairs of messages in S and verify that the 
minimum Hamming distance was at least 3. We can also easily generalize this idea to 
check if a code can always correct more errors. And we can use the observations made 
above to decode any received word: just find the closest valid codeword to the received 
one, and then use the known mapping between each distinct message and the codeword 
to produce the message. The message will be the correct one if the actual number of errors 
is no larger than the number for which error correction is guaranteed. The check for the 
nearest codeword may be exponential in the number of message bits we would like to 
send, making it a reasonable approach only if the number of bits is small. 

But how do we go about finding a good embedding (i.e., good code words)? This task 
isn’t straightforward, as the following example shows. Suppose we want to reliably send 
4-bit messages so that the receiver can correct all single-bit errors in the received words. 
Clearly, we need to find a set of codewords S with 24 elements. What should the members 
of S be? 

The answer isn’t obvious. Once again, we could write a program to search through 
possible sets of n-bit codewords until it finds a set of size 16 with a minimum Hamming 
distance of 3. A tedious and exhaustive search for our 4-bit message example shows that 
the minimum n is 7, and one example of S is: 

0000000 1100001 1100110 0000111 
0101010 1001011 1001100 0101101 
1010010 0110011 0110100 1010101 
1111000 0011001 0011110 1111111 

But such exhaustive searches are impractical when we want to send even modestly 
longer messages. So we’d like some constructive technique for building S . Much of the 



54 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES 

theory and practice of coding is devoted to finding such constructions and developing 
efficient encoding and decoding strategies. 

Broadly speaking, there are two classes of code constructions, each with an enormous 
number of instances. The first is the class of algebraic block codes. The second is the 
class of graphical codes. We will study two simple examples of linear block codes, which 
themselves are a sub-class of algebraic block codes: rectangular parity codes and Ham­
ming codes. We also note that the repetition code discussed in Section 5.2 is an example of 
a linear block code. 

In the next two chapters, we will study convolutional codes, a sub-class of graphical 
codes. 

⌅ 5.4 Linear Block Codes and Parity Calculations 

Linear block codes are examples of algebraic block codes, which take the set of k-bit mes­
sages we wish to send (there are 2k of them) and produce a set of 2k codewords, each n bits 
long (n � k) using algebraic operations over the block. The word “block” refers to the fact 
that any long bit stream can be broken up into k-bit blocks, which are each then expanded 
to produce n-bit codewords that are sent. 

Such codes are also called (n, k) codes, where k message bits are combined to produce 
n code bits (so each codeword has n - k “redundancy” bits). Often, we use the notation 
(n, k, d), where d refers to the minimum Hamming distance of the block code. The rate of a 
block code is defined as k/n; the larger the rate, the less the redundancy overhead incurred 
by the code. 

A linear code (whether a block code or not) produces codewords from message bits by 
restricting the algebraic operations to linear functions over the message bits. By linear, we 
mean that any given bit in a valid codeword is computed as the weighted sum of one or 
more original message bits. 

Linear codes, as we will see, are both powerful and efficient to implement. They are 
widely used in practice. In fact, all the codes we will study—including convolutional 
codes—are linear, as are most of the codes widely used in practice. We already looked 
at the properties of a simple linear block code: the repetition code we discussed in Sec­
tion 5.2 is a linear block code with parameters (n, 1, n). 

An important and popular class of linear codes are binary linear codes. The computations 
in the case of a binary code use arithmetic modulo 2, which has a special name: algebra 
in a Galois Field of order 2, also denoted F

2

. A field must define rules for addition and 
multiplication, and their inverses. Addition in F

2 is according to the following rules: 0 +  
0 = 1+ 1 = 0;1 + 0 = 0+ 1 = 1. Multiplication is as usual: 0 · 0 = 0 · 1 = 1 · 0 = 0; 1 · 1 = 1. 
We leave you to figure out the additive and multiplicative inverses of 0 and 1. Our focus 
in this book will be on linear codes over F

2

, but there are natural generalizations to fields 
of higher order (in particular, Reed Solomon codes, which are over Galois Fields of order 
2

q). 
A linear code is characterized by the following theorem, which is both a necessary and 

a sufficient condition for a code to be linear: 

Theorem 5.5 A code is linear if, and only if, the sum of any two codewords is another codeword. 
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A useful corollary of this theorem is that the all-zeroes codeword has to be in any linear 
code, because it results from adding a codeword to itself. 

For example, the block code defined by codewords 000,101,011 is not a linear code, 
because 101 + 011 = 110 is not a codeword. But if we add 110 to the set, we get a lin­
ear code because the sum of any two codewords is now another codeword. The code 
000,101,011,110 has a minimum Hamming distance of 2 (that is, the smallest Hamming 
distance between any two codewords in 2), and can be used to detect all single-bit errors 
that occur during the transmission of a code word. You can also verify that the minimum 
Hamming distance of this code is equal to the smallest number of 1’s in a non-zero code-
word. In fact, that’s a general property of all linear block codes, which we state formally 
below: 

Theorem 5.6 Define the weight of a codeword as the number of 1’s in the word. Then, the mini­
mum Hamming distance of a linear block code is equal to the weight of the non-zero codeword with 
the smallest weight. 

To see why, use the property that the Hamming distance between any two bit-strings 
of equal length is equal to the weight of their sum. Hence, the minimum value of the 
Hamming distance over all pairs of codewords, c

1 and c
2

, is equal to the minimum value 
of the weight of the codeword c

1 + c
2

. Because the code is linear, c
1 + c

2 is also a codeword, 
completing the proof. 

The rest of this section shows how to construct linear block codes over F
2

. For sim­
plicity, and without much loss of generality, we will focus on correcting single-bit errors. 
i.e., on single-error correction (SEC) codes.. We will show two ways of building the set S 
of transmission messages to have single-error correction capability, and will describe how 
the receiver can perform error correction on the (possibly corrupted) received messages. 

We will start with the rectangular parity code in Section 5.5, and then discuss the cleverer 
and more efficient Hamming code in Section 5.7. 

⌅ 5.5 Rectangular Parity SEC Code 

We define the parity of bits x
1

, x
2

, . . . , xn as (x
1 + x

2 + . . .+ xn), where the addition is per­
formed modulo 2 (it’s the same as taking the exclusive OR of the n bits). The parity is even 
when the sum is 0 (i.e., the number of ones is even), and odd otherwise. 

Let parity(s) denote the parity of all the bits in the bit-string s. We’ll use a dot, ·, to 
indicate the concatenation (sequential joining) of two messages or a message and a bit. For 
any message M (a sequence of one or more bits), let w = M · parity(M). You should be 
able to confirm that parity(w) = 0. This code, which adds a parity bit to each message, 
is also called the even parity code, because the number of ones in each codeword is even. 
Even parity lets us detect single errors because the set of codewords, {w}, each defined as 
M · parity(M), has a Hamming distance of 2. 

If we transmit w when we want to send some message M , then the receiver can take the 
received word, r, and compute parity(r) to determine if a single error has occurred. The 
receiver’s parity calculation returns 1 if an odd number of the bits in the received message 
has been corrupted. When the receiver’s parity calculation returns a 1, we say there has 
been a parity error. 
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d
11 d

12 d
13 d

14 p row(1) 
d
21 d

22 d
23 d

24 p row(2) 
p col(1) p col(2) p col(3) p col(4) 

Figure 5-3: A 2 ⇥ 4 arrangement for an 8-bit message with row and column parity. 

0 1 1 0 0  
1 1 0 1 1  
1 0 1 1  

(a) 

1 0 0 1 1  
0 0 1 0 1  
1 0 1 0  

(b) 

0 1 1 1 1  
1 1 1 0 1  
1 0 0 0  

(c) 

Figure 5-4: Example received 8-bit messages. Which, if any, have one error? Which, if any, have two? 

This section describes a simple approach to building an SEC code by constructing mul­
tiple parity bits, each over various subsets of the message bits, and then using the resulting 
pattern of parity errors (or non-errors) to help pinpoint which bit was corrupted. 

Rectangular code construction: Suppose we want to send a k-bit message M . Shape the 
k bits into a rectangular array with r rows and c columns, i.e., k = rc. For example, if k = 8, 
the array could be 2 ⇥ 4 or 4 ⇥ 2 (or even 8 ⇥ 1 or 1 ⇥ 8, though those are less interesting). 
Label each data bit with a subscript giving its row and column: the first bit would be d

11

, 
the last bit drc. See Figure 5-3. 

Define p row(i) to be the parity of all the bits in row i of the array and let R be all the 
row parity bits collected into a sequence: 

R = [p row(1),p row(2), . . . ,p row(r)] 

Similarly, define p col(j) to be the parity of all the bits in column j of the array and let C 
be all the column parity bits collected into a sequence: 

C = [p col(1),p col(2), . . . ,p col(c)] 

Figure 5-3 shows what we have in mind when k = 8. 
Let w = M · R · C, i.e., the transmitted codeword consists of the original message M , 

followed by the row parity bits R in row order, followed by the column parity bits C in 
column order. The length of w is n = rc+ r + c. This code is linear because all the parity 
bits are linear functions of the message bits. The rate of the code is rc/(rc+ r+ c). 

We now prove that the rectangular parity code can correct all single-bit errors. 

Proof of single-error correction property: This rectangular code is an SEC code for all 
values of r and c. We will show that it can correct all single bit errors by showing that its 
minimum Hamming distance is 3 (i.e., the Hamming distance between any two codewords 
is at least 3). Consider two different uncoded messages, Mi and Mj . There are three cases 
to discuss: 

•	 If Mi and Mj differ by a single bit, then the row and column parity calculations 
involving that bit will result in different values. Thus, the corresponding codewords, 
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wi and wj , will differ by three bits: the different data bit, the different row parity bit, 
and the different column parity bit. So in this case HD(wi,wj ) = 3. 

•	 If Mi and Mj differ by two bits, then either (1) the differing bits are in the same 
row, in which case the row parity calculation is unchanged but two column parity 
calculations will differ, (2) the differing bits are in the same column, in which case the 
column parity calculation is unchanged but two row parity calculations will differ, 
or (3) the differing bits are in different rows and columns, in which case there will be 
two row and two column parity calculations that differ. So in this case HD(wi,wj ) � 
4. 

•	 If Mi and Mj differ by three or more bits, then HD(wi,wj ) � 3 because wi and wj 

contain Mi and Mj respectively. 

Hence we can conclude that HD(wi,wj ) � 3 and our simple “rectangular” code will be 
able to correct all single-bit errors. 

Decoding the rectangular code: How can the receiver’s decoder correctly deduce M 
from the received w, which may or may not have a single bit error? (If w has more than 
one error, then the decoder does not have to produce a correct answer.) 

Upon receiving a possibly corrupted w, the receiver checks the parity for the rows and 
columns by computing the sum of the appropriate data bits and the corresponding parity 
bit (all arithmetic in F

2

). By definition, this sum will be 1 if there is a parity error. Then: 

•	 If there are no parity errors, then there has not been a single error, so the receiver can 
use the data bits as-is for M . This situation is shown in Figure 5-4(a). 

•	 If there is single row or column parity error, then the corresponding parity bit is in 
error. But the data bits are okay and can be used as-is for M . This situation is shown 
in Figure 5-4(c), which has a parity error only in the fourth column. 

•	 If there is one row and one column parity error, then the data bit in that row and 
column has an error. The decoder repairs the error by flipping that data bit and then 
uses the repaired data bits for M . This situation is shown in Figure 5-4(b), where 
there are parity errors in the first row and fourth column indicating that d

14 should 
be flipped to be a 0. 

•	 Other combinations of row and column parity errors indicate that multiple errors 
have occurred. There’s no “right” action the receiver can undertake because it 
doesn’t have sufficient information to determine which bits are in error. A common 
approach is to use the data bits as-is for M . If they happen to be in error, that will be 
detected by the error detection code (mentioned near the beginning of this chapter). 

This recipe will produce the most likely message, M , from the received codeword if there 
has been at most a single transmission error (and if the bit error probability is less than 
1/2). 

p

In the rectangular code the number of parity bits grows at least as fast as k (it is easy to 
verify that the smallest number of parity bits occurs when the number of rows, r, and the 
number of columns, c, are equal). Given a fixed amount of communication “bandwidth” 
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Figure 5-5: A codeword in systematic form for a block code. Any linear code can be transformed into an 

equivalent systematic code. 

or resource, we’re interested in devoting as much of it as possible to sending message bits, 
not parity bits. Are there other SEC codes that have better code rates than our simple 
rectangular code? A natural question to ask is: how little redundancy can we get away with 
and still manage to correct errors? 

The Hamming code uses a clever construction that uses the intuition developed while 
answering the question mentioned above. We answer this question next. 

⌅ 5.6 How many parity bits are needed in an SEC code? 

Let’s think about what we’re trying to accomplish with an SEC code: the correction of 
transmissions that have a single error. For a transmitted message of length n there are 
n + 1  situations the receiver has to distinguish between: no errors and a single error in 
a specified position along the string of n received bits. Then, depending on the detected 
situation, the receiver can make, if necessary, the appropriate correction. 

Our first observation, which we will state here without proof, is that any linear code 
can be transformed into an equivalent systematic code. A systematic code is one where 
every n-bit codeword can be represented as the original k-bit message followed by the 
n - k parity bits (it actually doesn’t matter how the original message bits and parity bits 
are interspersed). Figure 5-5 shows a codeword in systematic form. 

So, given a systematic code, how many parity bits do we absolutely need? We need 
to choose n so that single error correction is possible. Since there are n - k parity bits, 
each combination of these bits must represent some error condition that we must be able 
to correct (or infer that there were no errors). There are 2n-k possible distinct parity bit 
combinations, which means that we can distinguish at most that many error conditions. 
We therefore arrive at the constraint 

n-k n + 1  2 (5.6) 

i.e., there have to be enough parity bits to distinguish all corrective actions that might 
need to be taken (including no action). Given k, we can determine n - k, the number of 
parity bits needed to satisfy this constraint. Taking the log (to base 2) of both sides, we 
can see that the number of parity bits must grow at least logarithmically with the number 
of message bits. Not all codes achieve this minimum (e.g., the rectangular code doesn’t), 
but the Hamming code, which we describe next, does. 

We also note that the reasoning here for an SEC code can be extended to determine a 
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Figure 5-6: Venn diagrams of Hamming codes showing which data bits are protected by each parity bit. 

lower bound on the number of parity bits needed to correct t > 1 errors. 

⌅ 5.7 Hamming Codes 

Intuitively, it makes sense that for a code to be efficient, each parity bit should protect 
as many data bits as possible. By symmetry, we’d expect each parity bit to do the same 
amount of “work” in the sense that each parity bit would protect the same number of data 
bits. If some parity bit is shirking its duties, it’s likely we’ll need a larger number of parity 
bits in order to ensure that each possible single error will produce a unique combination 
of parity errors (it’s the unique combinations that the receiver uses to deduce which bit, if 
any, had an error). 

The class of Hamming single error correcting codes is noteworthy because they are 
particularly efficient in the use of parity bits: the number of parity bits used by Hamming 
codes grows logarithmically with the size of the codeword. Figure 5-6 shows two examples 
of the class: the (7,4) and (15,11) Hamming codes. The (7,4) Hamming code uses 3 parity 
bits to protect 4 data bits; 3 of the 4 data bits are involved in each parity computation. The 
(15,11) Hamming code uses 4 parity bits to protect 11 data bits, and 7 of the 11 data bits are 
used in each parity computation (these properties will become apparent when we discuss 
the logic behind the construction of the Hamming code in Section 5.7.1). 

Looking at the diagrams, which show the data bits involved in each parity computation, 
you should convince yourself that each possible single error (don’t forget errors in one of 
the parity bits!) results in a unique combination of parity errors. Let’s work through the 
argument for the (7,4) Hamming code. Here are the parity-check computations performed 
by the receiver: 

E
1 = (d

1 + d
2 + d

4 + p
1

) 

E
2 = (d

1 + d
3 + d

4 + p
2

) 

E
3 = (d

2 + d
3 + d

4 + p
3

) 



60 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES 

where each Ei is called a syndrome bit because it helps the receiver diagnose the “illness” 
(errors) in the received data. For each combination of syndrome bits, we can look for 
the bits in each codeword that appear in all the Ei computations that produced 1; these 
bits are potential candidates for having an error since any of them could have caused the 
observed parity errors. Now eliminate from the candidates those bits that appear in any Ei 

computations that produced 0 since those calculations prove those bits didn’t have errors. 
We’ll be left with either no bits (no errors occurred) or one bit (the bit with the single error). 

For example, if E
1 = 1, E

2 = 0  and E
3 = 1, we notice that bits d

2 and d
4 both appear 

in the computations for E
1 and E

3

. However, d
4 appears in the computation for E

2 and 
should be eliminated, leaving d

2 as the sole candidate as the bit with the error. 
Another example: suppose E

1 = 1, E
2 = 0  and E

3 = 0. Any of the bits appearing in the 
computation for E

1 could have caused the observed parity error. Eliminating those that 
appear in the computations for E

2 and E
3

, we’re left with p
1

, which must be the bit with 
the error. 

Applying this reasoning to each possible combination of parity errors, we can make a 
table that shows the appropriate corrective action for each combination of the syndrome 
bits: 

E
3

E
2

E
1 

000 
001 
010 
011 
100 
101 
110 
111 

Corrective Action 
no errors 
p
1 has an error, flip to correct 

p
2 has an error, flip to correct 

d
1 has an error, flip to correct 

p
3 has an error, flip to correct 

d
2 has an error, flip to correct 

d
3 has an error, flip to correct 

d
4 has an error, flip to correct 

⌅ 5.7.1 Is There a Logic to the Hamming Code Construction? 

So far so good, but the allocation of data bits to parity-bit computations may seem rather 
arbitrary and it’s not clear how to build the corrective action table except by inspection. 

The cleverness of Hamming codes is revealed if we order the data and parity bits in a 
certain way and assign each bit an index, starting with 1: 

index 
binary index 

1 
001 

2 
010 

3 
011 

4 
100 

5 
101 

6 
110 

7 
111 

(7,4) code p
1 p

2 d
1 p

3 d
2 d

3 d
4 

This table was constructed by first allocating the parity bits to indices that are powers 
of two (e.g., 1, 2, 4, . . . ). Then the data bits are allocated to the so-far unassigned indicies, 
starting with the smallest index. It’s easy to see how to extend this construction to any 
number of data bits, remembering to add additional parity bits at indices that are a power 
of two. 

Allocating the data bits to parity computations is accomplished by looking at their re­
spective indices in the table above. Note that we’re talking about the index in the table, not 
the subscript of the bit. Specifically, di is included in the computation of pj if (and only if) 
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the logical AND of binary index(di) and binary index(pj ) is non-zero. Put another way, di 
is included in the computation of pj if, and only if, index(pj ) contributes to index(di) when 
writing the latter as sums of powers of 2. 

So the computation of p
1 (with an index of 1) includes all data bits with odd indices: d

1

, 
d
2 and d

4

. And the computation of p
2 (with an index of 2) includes d

1

, d
3 and d

4

. Finally, 
the computation of p

3 (with an index of 4) includes d
2

, d
3 and d

4

. You should verify that 
these calculations match the Ei equations given above. 

If the parity/syndrome computations are constructed this way, it turns out that E
3

E
2

E
1

, 
treated as a binary number, gives the index of the bit that should be corrected. For exam­
ple, if E

3

E
2

E
1 = 101, then we should correct the message bit with index 5, i.e., d

2

. This 
corrective action is exactly the one described in the earlier table we built by inspection. 

The Hamming code’s syndrome calculation and subsequent corrective action can be ef­
ficiently implemented using digital logic and so these codes are widely used in contexts 
where single error correction needs to be fast, e.g., correction of memory errors when fetch­
ing data from DRAM. 
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⌅ Problems and Questions 

1. Prove that the Hamming distance satisfies the triangle inequality. That is, show that 
HD(x, y) + HD(y, z) � HD(x, z) for any three n-bit binary words. 

2. Consider the following rectangular linear block code: 

D0 D1 D2 D3 D4 | P0
 
D5 D6 D7 D8 D9 | P1
 
D10 D11 D12 D13 D14 | P2
 

P3 P4 P5 P6 P7 | 

Here, D0–D14 are data bits, P0–P2 are row parity bits and P3–P7 are column parity 
bits. What are n, k, and d for this linear code? 

3. Consider a rectangular parity code as described in Section 5.5. Ben Bitdiddle would 
like use this code at a variety of different code rates and experiment with them on 
some channel. 

(a) Is it possible to obtain a rate lower than 1/3 with this code? Explain your an­
swer. 

(b) Suppose he is interested in code rates like 1/2, 2/3, 3/4, etc.; i.e., in general a 
`rate of `+1 , for some integer ` > 1. Is it always possible to pick the parameters of 

the code (i.e, the block size and the number of rows and columns over which to 
`construct the parity bits) so that any such code rate of the form is achievable? l+1 

Explain your answer. 

4. Two-Bit Communications (TBC), a slightly suspect network provider, uses the fol­
lowing linear block code over its channels. All arithmetic is in F

2

. 

P
0 = D

0

, P
1 = (D

0 +D
1

), P
2 = D

1

. 

(a) What are n and k for this code? 

(b) Suppose we want to perform syndrome decoding over the received bits. Write 
out the three syndrome equations for E

0

,E
1

,E
2

. 
(c) For the eight possible syndrome values, determine what error can be detected 

(none, error in a particular data or parity bit, or multiple errors). Make your 
choice using maximum likelihood decoding, assuming a small bit error prob­
ability (i.e., the smallest number of errors that’s consistent with the given syn­
drome). 

(d) Suppose that the the 5-bit blocks arrive at the receiver in the following order: 
D

0

,D
1

, P
0

, P
1

, P
2

. If 11011 arrives, what will the TBC receiver report as the re­
ceived data after error correction has been performed? Explain your answer. 

(e) TBC would like to improve the code rate while still maintaining single-bit error 
correction. Their engineer would like to reduce the number of parity bits by 1. 
Give the formulas for P

0 and P
1 that will accomplish this goal, or briefly explain 

why no such code is possible. 
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5. Pairwise Communications has developed a linear block code over F
2 with three data 

and three parity bits, which it calls the pairwise code: 

P
1 = D

1 + D
2 (Each Di is a data bit; each Pi is a parity bit.) 

P
2 = D

2 + D
3
 

P
3 = D

3 + D
1
 

(a) Fill in the values of the following three attributes of this code: 
(i) Code rate = 

(ii) Number of 1s in a minimum-weight non-zero codeword = 

(iii) Minimum Hamming distance of the code = 

6. Consider the same “pairwise code” as in the previous problem. The receiver com­
putes three syndrome bits from the (possibly corrupted) received data and parity 
bits: E

1 = D
1 + D

2 + P
1

,E
2 = D

2 + D
3 + P

2

, and E
3 = D

3 + D
1 + P

3

. The receiver 
performs maximum likelihood decoding using the syndrome bits. For the combi­
nations of syndrome bits in the table below, state what the maximum-likelihood de­
coder believes has occured: no errors, a single error in a specific bit (state which one), 
or multiple errors. 

E
3

E
2

E
1 Error pattern [No errors / Error in bit ... (specify bit) / Multiple errors] 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

7. Alyssa P. Hacker extends the aforementioned pairwise code by adding an overall par­
ity bit. That is, she computes P

4 = 
P

3 
(Di + Pi), and appends P

4 to each origi­i=1

nal codeword to produce the new set of codewords. What improvement in error 
correction or detection capabilities, if any, does Alyssa’s extended code show over 
Pairwise’s original code? Explain your answer. 

8. For each of the sets of codewords below, determine whether the code is a linear block 
code over F

2 or not. Also give the rate of each code. 

(a) {000,001,010,011}. 

(b) {000, 011, 110, 101}. 

(c) {111, 100, 001, 010}. 

(d) {00000, 01111, 10100, 11011}. 

(e) {00000}. 
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9. For any linear block code over F
2 with minimum Hamming distance at least 2t+ 1  

between codewords, show that: 
✓
n
◆ ✓

n
◆ ✓

n
◆ 

2

n-k 
� 1 +  + + . . .  . 

1 2 t 

Hint: How many errors can such a code always correct? 

10. For each (n,k, d) combination below, state whether a linear block code with those 
parameters exists or not. Please provide a brief explanation for each case: if such a 
code exists, give an example; if not, you may rely on a suitable necessary condition. 

(a) (31,26,3): Yes / No 

(b) (32,27,3): Yes / No 

(c) (43,42,2): Yes / No 

(d) (27,18,3): Yes / No 

(e) (11,5,5): Yes / No 

11. Using the Hamming code construction for the (7,4) code, construct the parity equa­
tions for the (15,11) code. How many equations does this code have? How many 
message bits contribute to each parity bit? 

12. Prove Theorems 5.2 and 5.3. (Don’t worry too much if you can’t prove the latter; we 
will give the proof in the next chapter.) 

13. The weight of a codeword in a linear block code over F
2 is the number of 1’s in 

the word. Show that any linear block code must either: (1) have only even weight 
codewords, or (2) have an equal number of even and odd weight codewords. 
Hint: Proof by contradiction. 

14. There are N people in a room, each wearing a hat colored red or blue, standing in a 
line in order of increasing height. Each person can see only the hats of the people in 
front, and does not know the color of his or her own hat. They play a game as a team, 
whose rules are simple. Each person gets to say one word: “red” or “blue”. If the 
word they say correctly guesses the color of their hat, the team gets 1 point; if they 
guess wrong, 0 points. Before the game begins, they can get together to agree on a 
protocol (i.e., what word they will say under what conditions). Once they determine 
the protocol, they stop talking, form the line, and are given their hats at random. 

Can you develop a protocol that will maximize their score? What score does your 
protocol achieve? 
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