
MIT 6.02 DRAFT Lecture Notes
Last update: September 23, 2012

CHAPTER 5
Coping with Bit Errors using Error

Correction Codes

Recall our main goal in designing digital communication networks: to send information
reliably and efficiently between nodes. Meeting that goal requires the use of techniques
to combat bit errors, which are inevitable in both commmunication channels and storage
media (storage may be viewed as “communication across time”; you store something now
and usually want to be able to retrieve it later).

The key idea we will apply to achieve reliable communication is the addition of redun­
dancy to the transmitted data, to improve the probability that the original message can be
reconstructed from the possibly corrupted data that is received. The sender has an encoder
whose job is to take the message and process it to produce the coded bits that are then sent
over the channel. The receiver has a decoder whose job is to take the received (coded) bits
and to produce its best estimate of the message. The encoder-decoder procedures together
constitute channel coding; good channel codes provide error correction capabilities that
reduce the bit error rate (i.e., the probability of a bit error).

With proper design, full error correction may be possible, provided only a small num­
ber of errors has occurred. Even when too many errors have occurred to permit correction,
it may be possible to perform error detection. Error detection provides a way for the re­
ceiver to tell (with high probability) if the message was decoded correctly or not. Error
detection usually works by the sender and receiver using a different code from the one
used to correct errors; common examples include the cyclic redundancy check (CRC) or hash
functions. These codes take n-bit messages and produce a compact “signature” of that mes­
sage that is much smaller than the message (e.g., the popular CRC-32 scheme produces a
32-bit signature of an arbitrarily long message). The sender computes and transmits the
signature along with the message bits, usually appending it to the end of the message. The
receiver, after running the decoder to correct errors, then computes the signature over its
estimate of the message bits and compares that signature to its estimate of the signature
bits in the received data. If the computed and estimated signatures are not equal, then
the receiver considers the message to have one or more bit errors; otherwise, it assumes
that the message has been received correctly. This latter assumption is probabilistic: there
is some non-zero (though very small, for good signatures) probability that the estimated

47

48 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

and computed signatures match, but the receiver’s decoded message is different from the
sender’s. If the signatures don’t match, the receiver and sender may use some higher-layer
protocol to arrange for the message to be retransmitted; we will study such schemes later.
We will not study error detection codes like CRC or hash functions in this course.

Our plan for this chapter is as follows. To start, we will assume a binary symmetric
channel (BSC). In a BSC, the probability of any given bit “flipping” (a 0 sent over the
channel is received as a 1, or vice versa) is ", independent of all other bits. Then, we will
discuss and analyze an elementary redundancy scheme called a repetition code, which will
simply make n copies of any given bit. The repetition code has a code rate of 1/n—that
is, for every useful message bit, we end up transmitting n total bits. The overhead of the
repetition code of rate n is 1 - 1/n, which is rather high for the error correcting power of
the code. We will then turn to the key ideas that allow us to build powerful codes capable
of correcting errors without such a high overhead (or equivalently, capable of correcting
far more errors at a given code rate compared to the repetition code).

There are two big, inter-related ideas used in essentially all error correction codes. The
first is the notion of embedding, where the messages one wishes to send are placed in a
geometrically pleasing way in a larger space so that the distance between any two valid
points in the embedding is large enough to enable the correction and detection of errors.
The second big idea is to use parity calculations, which are linear functions over the bits
we wish to send, to generate the redundancy in the bits that are actually sent. We will
study examples of embeddings and parity calculations in the context of two classes of
codes: linear block codes (which are an instance of the broad class of algebraic codes)
and convolutional codes (which are perhaps the simplest instance of the broad class of
graphical codes).

We start with a brief discussion of bit errors.

⌅ 5.1 Bit Errors and BSC

A BSC is characterized by one parameter, ", which we can assume to be < 1/2, the proba­
bility of a bit error. It is a natural discretization of a noise model over signals (a common
model for noise, as we will see in Chapter 9, is additive Gaussian noise, which is also
a single-parameter model fully characterized by the variance, (2). We can determine "
empirically by noting that if we send N bits over the channel, the expected number of
erroneously received bits is N · ". By sending a long known bit pattern and counting the
fraction or erroneously received bits, we can estimate ", thanks to the law of large numbers.
In practice, even when the BSC is a reasonable error model, the range of " could be rather
large, between 10-2 (or even higher) all the way to 10-10 or even 10-12 . A value of " of
about 10-2 means that messages longer than a 100 bits will see at least one error on aver­
age; given that the typical unit of communication over a channel (a “packet”) is generally
between 500 bits and 12000 bits (or more, in some networks), such an error rate is too high.

But is " of 10-12 small enough that we don’t need to bother about doing any error
correction? The answer often depends on the data rate of the channel. If the channel has
a rate of 10 Gigabits/s (available today even on commodity server-class computers), then
the “low” " of 10-12 means that the receiver will see one error every 10 seconds on average
if the channel is continuously loaded. Unless we include some mechanisms to mitigate

49 SECTION 5.2. THE SIMPLEST CODE: REPETITION

the situation, the applications using the channel may find errors occurring too frequently.
On the other hand, an " of 10-12 may be fine over a communication channel running at 10
Megabits/s, as long as there is some way to detect errors when they occur.

In the BSC model, a transmitted bit b (0 or 1) is interpreted by the receiver as 1 - b
with probability " and as b with probability 1 - ". In this model, each bit is corrupted
independently and with equal probability (which makes this an “iid” random process,
for “independent and identically distributed”). We call " the bit-flip probability or the “error
probability”, and sometimes abuse notation and call it the “bit error rate” (it isn’t really
a “rate”, but the term is still used in the literature). Given a packet of size S bits, it is
straightforward to calculate the probability of the entire packet being received correctly
when sent over a BSC with bit-flip probability ":

SP(packet received correctly) = (1- ") .

The packet error probability, i.e., the probability of the packet being incorrect, is 1 minus
this quantity, because a packet is correct if and only if all its bits are correct.

Hence,
SP(packet error) = 1- (1- ") . (5.1)

When " << 1, a simple first-order approximation of the PER is possible because (1 +
Nx) ⇡ 1 +Nx when |x| << 1. That approximation gives the pleasing result that, when

" << 1,
P(packet error) ⇡ 1- (1- S") = S". (5.2)

The BSC is perhaps the simplest discrete channel model that is realistic, but real-world
channels exhibit more complex behaviors. For example, over many wireless and wired
channels as well as on storage media (like CDs, DVDs, and disks), errors can occur in
bursts. That is, the probability of any given bit being received wrongly depends on recent
history: the probability is higher if the bits in the recent past were received incorrectly. Our
goal is to develop techniques to mitigate the effects of both the BSC and burst errors. We’ll
start with techniques that work well over a BSC and then discuss how to deal with bursts.

⌅ 5.2 The Simplest Code: Repetition

In general, a channel code provides a way to map message words to codewords (analogous
to a source code, except here the purpose is not compression but rather the addition of
redundancy for error correction or detection). In a repetition code, each bit b is encoded as
n copies of b, and the result is delivered. If we consider bit b to be the message word, then
the corresponding codeword is bn (i.e., bb...b, n times). In this example, there are only two
possible message words (0 and 1) and two corresponding codewords. The repetition code
is absurdly simple, yet it’s instructive and sometimes even useful in practice!

But how well does it correct errors? To answer this question, we will write out the
probability of overcoming channel errors for the BSC error model with the repetition code.
That is, if the channel independently corrupts each bit with probability ", what is the prob­
ability that the receiver decodes the received codeword correctly to produce the message
word that was sent?

The answer depends on the decoding method used. A reasonable decoding method is

50 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

Figure 5-1: Probability of a decoding error with the repetition code that replaces each bit b with n copies of

b. The code rate is 1/n.

maximum likelihood decoding: given a received codeword, r, which is some n-bit combina­
tion of 0’s and 1’s, the decoder should produce the most likely message that could have
caused r to be received. Since the BSC error probability, ", is smaller than 1/2, the most
likely option is the codeword that has the most number of bits in common with r. This
decoding rule results in the minimum probability of error when all messages are equally
likely.

Hence, the decoding process is as follows. First, count the number of 1’s in r. If there are
more than n/2 1’s, then decode the message as 1. If there are more than n/2 0’s, then decode
the message as 0. When n is odd, each codeword will be decoded unambiguously. When
n is even, and has an equal number of 0’s and 1’s, the decoder can’t really tell whether the
message was a 0 or 1, and the best it can do is to make an arbitrary decision. (We have
assumed that the a priori probability of sending a message 0 is the same as that of sending
a 1.)

We can write the probability of decoding error for the repetition code as follows, taking
care to write the limits of the summation correctly:

(Pn (
n
)
"i(1 - ")n-i if n oddi=d n

2 e iP (decoding error) = (5.3)Pn
n

(
n
)
"i(1 - ")n-i

+ 1
(

n)"n/2(1 - ")n/2 if n eveni= +1 i 2 n/22

The notation
(
n
)

denotes the number of ways of selecting i objects (in this case, bit posi­i
tions) from n objects.

When n is even, we add a term at the end to account for the fact that the decoder has a
fifty-fifty chance of guessing correctly when it receives a codeword with an equal number
of 0’s and 1’s.

51 SECTION 5.3. EMBEDDINGS AND HAMMING DISTANCE

Figure 5-1 shows the probability of decoding error as a function of the repetition factor,
n, for the repetition code, computed using Equation (5.3). The y-axis is on a log scale, and
the probability of error is more or less a straight line with negative slope (if you ignore
the flat pieces), which means that the decoding error probability decreases exponentially
with the code rate. It is also worth noting that the error probability is the same when
n = 2` as when n = 2` - 1. The reason, of course, is that the decoder obtains no additional
information that it already didn’t know from any 2` - 1 of the received bits.

Despite the exponential reduction in the probability of decoding error as n increases,
the repetition code is extremely inefficient in terms of the overhead it incurs, for a given
rate, 1/n. As such, it is used only in situations when one is not concerned with the over­
head of communication or storage (i.e., the resources consumed), and/or one is unable to
implement a more complex decoder in the system.

We now turn to developing more sophisticated codes. There are two big related ideas:
embedding messages into spaces in a way that achieves structural separation and parity (linear)
computations over the message bits.

⌅ 5.3 Embeddings and Hamming Distance

Let’s start our investigation into error correction by examining the situations in which
error detection and correction are possible. For simplicity, we will focus on single-error
correction (SEC) here. By that we mean codes that are guaranteed to produce the correct
message word, given a received codeword with zero or one bit errors in it. If the received
codeword has more than one bit error, then we can make no guarantees (the method might
return the correct message word, but there is at least one instance where it will return the
wrong answer).

nThere are 2 possible n-bit strings. Define the Hamming distance (HD) between two n-
bit words, w

1 and w
2

, as the number of bit positions in which the messages differ. Thus
0  HD(w

1

,w
2

)  n.
Suppose that HD(w

1

,w
2

) = 1. Consider what happens if we transmit w
1 and there’s

a single bit error that inconveniently occurs at the one bit position in which w
1 and w

2

differ. From the receiver’s point of view it just received w
2

—the receiver can’t detect the
difference between receiving w

1 with a unfortunately placed bit error and receiving w
2

.
In this case, we cannot guarantee that all single bit errors will be corrected if we choose a
code where w

1 and w
2 are both valid codewords.

What happens if we increase the Hamming distance between any two valid codewords
to 2? More formally, let’s restrict ourselves to only sending some subset S = {w

1

,w
2

, ...,ws}

of the 2n possible words such that

HD(wi,wj) � 2 for all wi,wj 2 S where i 6= j (5.4)

Thus if the transmission of wi is corrupted by a single error, the result is not an element
of S and hence can be detected as an erroneous reception by the receiver, which knows
which messages are elements of S . A simple example is shown in Figure 5-2: 00 and 11 are
valid codewords, and the receptions 01 and 10 are surely erroneous.

We define the minimum Hamming distance of a code as the minimum Hamming distance
between any two codewords in the code. From the discussion above, it should be easy to

52 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

Figure 5-2: Codewords separated by a Hamming distance of 2 can be used to detect single bit errors. The

codewords are shaded in each picture. The picture on the left is a (2,1) repetition code, which maps 1-bit
messages to 2-bit codewords. The code on the right is a (3,2) code, which maps 2-bit messages to 3-bit
codewords.

see what happens if we use a code whose minimum Hamming distance is D. We state the
property formally:

Theorem 5.1 A code with a minimum Hamming distance of D can detect any error pattern of
D - 1 or fewer errors. Moreover, there is at least one error pattern with D errors that cannot be
detected reliably.

Hence, if our goal is to detect errors, we can use an embedding of the set of messages we
wish to transmit into a bigger space, so that the minimum Hamming distance between any
two codewords in the bigger space is at least one more than the number of errors we wish
to detect. (We will discuss how to produce such embeddings in the subsequent sections.)

But what about the problem of correcting errors? Let’s go back to Figure 5-2, with S =
{00,11}. Suppose the received sequence is 01. The receiver can tell that a single error has
occurred, but it can’t tell whether the correct data sent was 00 or 11—both those possible
patterns are equally likely under the BSC error model.

Ah, but we can extend our approach by producing an embedding with more space
between valid codewords! Suppose we limit our selection of messages in S even further,
as follows:

HD(wi,wj) � 3 for all wi,wj 2 S where i 6 (5.5)= j

How does it help to increase the minimum Hamming distance to 3? Let’s define one
more piece of notation: let Ew

i be the set of messages resulting from corrupting wi with a
single error. For example, E

000 = {001,010,100}. Note that HD(wi,an element of Ew
i) = 1.

With a minimum Hamming distance of 3 between the valid codewords, observe that
there is no intersection between Ew

i and Ew
j when i 6 Why is that? Suppose there = j.

was a message wk that was in both Ew
i and Ew

j . We know that HD(wi,wk) = 1 and
HD(wj ,wk) = 1, which implies that wi and wj differ in at most two bits and consequently
HD(wi,wj)  2. (This result is an application of Theorem 5.2 below, which states that the
Hamming distance satisfies the triangle inequality.) That contradicts our specification that
their minimum Hamming distance be 3. So the Ew

i don’t intersect.
So now we can correct single bit errors as well: the received message is either a member

53 SECTION 5.3. EMBEDDINGS AND HAMMING DISTANCE

of S (no errors), or is a member of some particular Ew
i (one error), in which case the receiver

can deduce the original message was wi. Here’s a simple example: let S = {000, 111}.
So E

000 = {001, 010, 100} and E
111 = {110, 101, 011} (note that E

000 doesn’t intersect E
111

).
Suppose the received sequence is 101. The receiver can tell there has been a single error
because 101 2/ S . Moreover it can deduce that the original message was most likely 111
because 101 2 E

111

.
We can formally state some properties from the above discussion, and specify the error-

correcting power of a code whose minimum Hamming distance is D.

Theorem 5.2 The Hamming distance between n-bit words satisfies the triangle inequality. That
is, HD(x, y) + HD(y, z) � HD(x, z).

Theorem 5.3 For a BSC error model with bit error probability < 1/2, the maximum likelihood de­
coding strategy is to map any received word to the valid codeword with smallest Hamming distance
from the received one (ties may be broken arbitrarily).

Theorem 5.4 A code with a minimum Hamming distance of D can correct any error pattern of
b

D-1
c or fewer errors. Moreover, there is at least one error pattern with bD-1

c + 1 errors that
2 2

cannot be corrected reliably.

Equation (5.5) gives us a way of determining if single-bit error correction can always
be performed on a proposed set S of transmission messages—we could write a program
to compute the Hamming distance between all pairs of messages in S and verify that the
minimum Hamming distance was at least 3. We can also easily generalize this idea to
check if a code can always correct more errors. And we can use the observations made
above to decode any received word: just find the closest valid codeword to the received
one, and then use the known mapping between each distinct message and the codeword
to produce the message. The message will be the correct one if the actual number of errors
is no larger than the number for which error correction is guaranteed. The check for the
nearest codeword may be exponential in the number of message bits we would like to
send, making it a reasonable approach only if the number of bits is small.

But how do we go about finding a good embedding (i.e., good code words)? This task
isn’t straightforward, as the following example shows. Suppose we want to reliably send
4-bit messages so that the receiver can correct all single-bit errors in the received words.
Clearly, we need to find a set of codewords S with 24 elements. What should the members
of S be?

The answer isn’t obvious. Once again, we could write a program to search through
possible sets of n-bit codewords until it finds a set of size 16 with a minimum Hamming
distance of 3. A tedious and exhaustive search for our 4-bit message example shows that
the minimum n is 7, and one example of S is:

0000000 1100001 1100110 0000111
0101010 1001011 1001100 0101101
1010010 0110011 0110100 1010101
1111000 0011001 0011110 1111111

But such exhaustive searches are impractical when we want to send even modestly
longer messages. So we’d like some constructive technique for building S . Much of the

54 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

theory and practice of coding is devoted to finding such constructions and developing
efficient encoding and decoding strategies.

Broadly speaking, there are two classes of code constructions, each with an enormous
number of instances. The first is the class of algebraic block codes. The second is the
class of graphical codes. We will study two simple examples of linear block codes, which
themselves are a sub-class of algebraic block codes: rectangular parity codes and Ham­
ming codes. We also note that the repetition code discussed in Section 5.2 is an example of
a linear block code.

In the next two chapters, we will study convolutional codes, a sub-class of graphical
codes.

⌅ 5.4 Linear Block Codes and Parity Calculations

Linear block codes are examples of algebraic block codes, which take the set of k-bit mes­
sages we wish to send (there are 2k of them) and produce a set of 2k codewords, each n bits
long (n � k) using algebraic operations over the block. The word “block” refers to the fact
that any long bit stream can be broken up into k-bit blocks, which are each then expanded
to produce n-bit codewords that are sent.

Such codes are also called (n, k) codes, where k message bits are combined to produce
n code bits (so each codeword has n - k “redundancy” bits). Often, we use the notation
(n, k, d), where d refers to the minimum Hamming distance of the block code. The rate of a
block code is defined as k/n; the larger the rate, the less the redundancy overhead incurred
by the code.

A linear code (whether a block code or not) produces codewords from message bits by
restricting the algebraic operations to linear functions over the message bits. By linear, we
mean that any given bit in a valid codeword is computed as the weighted sum of one or
more original message bits.

Linear codes, as we will see, are both powerful and efficient to implement. They are
widely used in practice. In fact, all the codes we will study—including convolutional
codes—are linear, as are most of the codes widely used in practice. We already looked
at the properties of a simple linear block code: the repetition code we discussed in Sec­
tion 5.2 is a linear block code with parameters (n, 1, n).

An important and popular class of linear codes are binary linear codes. The computations
in the case of a binary code use arithmetic modulo 2, which has a special name: algebra
in a Galois Field of order 2, also denoted F

2

. A field must define rules for addition and
multiplication, and their inverses. Addition in F

2 is according to the following rules: 0 +
0 = 1+ 1 = 0;1 + 0 = 0+ 1 = 1. Multiplication is as usual: 0 · 0 = 0 · 1 = 1 · 0 = 0; 1 · 1 = 1.
We leave you to figure out the additive and multiplicative inverses of 0 and 1. Our focus
in this book will be on linear codes over F

2

, but there are natural generalizations to fields
of higher order (in particular, Reed Solomon codes, which are over Galois Fields of order
2

q).
A linear code is characterized by the following theorem, which is both a necessary and

a sufficient condition for a code to be linear:

Theorem 5.5 A code is linear if, and only if, the sum of any two codewords is another codeword.

55 SECTION 5.5. RECTANGULAR PARITY SEC CODE

A useful corollary of this theorem is that the all-zeroes codeword has to be in any linear
code, because it results from adding a codeword to itself.

For example, the block code defined by codewords 000,101,011 is not a linear code,
because 101 + 011 = 110 is not a codeword. But if we add 110 to the set, we get a lin­
ear code because the sum of any two codewords is now another codeword. The code
000,101,011,110 has a minimum Hamming distance of 2 (that is, the smallest Hamming
distance between any two codewords in 2), and can be used to detect all single-bit errors
that occur during the transmission of a code word. You can also verify that the minimum
Hamming distance of this code is equal to the smallest number of 1’s in a non-zero code-
word. In fact, that’s a general property of all linear block codes, which we state formally
below:

Theorem 5.6 Define the weight of a codeword as the number of 1’s in the word. Then, the mini­
mum Hamming distance of a linear block code is equal to the weight of the non-zero codeword with
the smallest weight.

To see why, use the property that the Hamming distance between any two bit-strings
of equal length is equal to the weight of their sum. Hence, the minimum value of the
Hamming distance over all pairs of codewords, c

1 and c
2

, is equal to the minimum value
of the weight of the codeword c

1 + c
2

. Because the code is linear, c
1 + c

2 is also a codeword,
completing the proof.

The rest of this section shows how to construct linear block codes over F
2

. For sim­
plicity, and without much loss of generality, we will focus on correcting single-bit errors.
i.e., on single-error correction (SEC) codes.. We will show two ways of building the set S
of transmission messages to have single-error correction capability, and will describe how
the receiver can perform error correction on the (possibly corrupted) received messages.

We will start with the rectangular parity code in Section 5.5, and then discuss the cleverer
and more efficient Hamming code in Section 5.7.

⌅ 5.5 Rectangular Parity SEC Code

We define the parity of bits x
1

, x
2

, . . . , xn as (x
1 + x

2 + . . .+ xn), where the addition is per­
formed modulo 2 (it’s the same as taking the exclusive OR of the n bits). The parity is even
when the sum is 0 (i.e., the number of ones is even), and odd otherwise.

Let parity(s) denote the parity of all the bits in the bit-string s. We’ll use a dot, ·, to
indicate the concatenation (sequential joining) of two messages or a message and a bit. For
any message M (a sequence of one or more bits), let w = M · parity(M). You should be
able to confirm that parity(w) = 0. This code, which adds a parity bit to each message,
is also called the even parity code, because the number of ones in each codeword is even.
Even parity lets us detect single errors because the set of codewords, {w}, each defined as
M · parity(M), has a Hamming distance of 2.

If we transmit w when we want to send some message M , then the receiver can take the
received word, r, and compute parity(r) to determine if a single error has occurred. The
receiver’s parity calculation returns 1 if an odd number of the bits in the received message
has been corrupted. When the receiver’s parity calculation returns a 1, we say there has
been a parity error.

56 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

d
11 d

12 d
13 d

14 p row(1)
d
21 d

22 d
23 d

24 p row(2)
p col(1) p col(2) p col(3) p col(4)

Figure 5-3: A 2 ⇥ 4 arrangement for an 8-bit message with row and column parity.

0 1 1 0 0
1 1 0 1 1
1 0 1 1

(a)

1 0 0 1 1
0 0 1 0 1
1 0 1 0

(b)

0 1 1 1 1
1 1 1 0 1
1 0 0 0

(c)

Figure 5-4: Example received 8-bit messages. Which, if any, have one error? Which, if any, have two?

This section describes a simple approach to building an SEC code by constructing mul­
tiple parity bits, each over various subsets of the message bits, and then using the resulting
pattern of parity errors (or non-errors) to help pinpoint which bit was corrupted.

Rectangular code construction: Suppose we want to send a k-bit message M . Shape the
k bits into a rectangular array with r rows and c columns, i.e., k = rc. For example, if k = 8,
the array could be 2 ⇥ 4 or 4 ⇥ 2 (or even 8 ⇥ 1 or 1 ⇥ 8, though those are less interesting).
Label each data bit with a subscript giving its row and column: the first bit would be d

11

,
the last bit drc. See Figure 5-3.

Define p row(i) to be the parity of all the bits in row i of the array and let R be all the
row parity bits collected into a sequence:

R = [p row(1),p row(2), . . . ,p row(r)]

Similarly, define p col(j) to be the parity of all the bits in column j of the array and let C
be all the column parity bits collected into a sequence:

C = [p col(1),p col(2), . . . ,p col(c)]

Figure 5-3 shows what we have in mind when k = 8.
Let w = M · R · C, i.e., the transmitted codeword consists of the original message M ,

followed by the row parity bits R in row order, followed by the column parity bits C in
column order. The length of w is n = rc+ r + c. This code is linear because all the parity
bits are linear functions of the message bits. The rate of the code is rc/(rc+ r+ c).

We now prove that the rectangular parity code can correct all single-bit errors.

Proof of single-error correction property: This rectangular code is an SEC code for all
values of r and c. We will show that it can correct all single bit errors by showing that its
minimum Hamming distance is 3 (i.e., the Hamming distance between any two codewords
is at least 3). Consider two different uncoded messages, Mi and Mj . There are three cases
to discuss:

•	 If Mi and Mj differ by a single bit, then the row and column parity calculations
involving that bit will result in different values. Thus, the corresponding codewords,

57 SECTION 5.5. RECTANGULAR PARITY SEC CODE

wi and wj , will differ by three bits: the different data bit, the different row parity bit,
and the different column parity bit. So in this case HD(wi,wj) = 3.

•	 If Mi and Mj differ by two bits, then either (1) the differing bits are in the same
row, in which case the row parity calculation is unchanged but two column parity
calculations will differ, (2) the differing bits are in the same column, in which case the
column parity calculation is unchanged but two row parity calculations will differ,
or (3) the differing bits are in different rows and columns, in which case there will be
two row and two column parity calculations that differ. So in this case HD(wi,wj) �
4.

•	 If Mi and Mj differ by three or more bits, then HD(wi,wj) � 3 because wi and wj

contain Mi and Mj respectively.

Hence we can conclude that HD(wi,wj) � 3 and our simple “rectangular” code will be
able to correct all single-bit errors.

Decoding the rectangular code: How can the receiver’s decoder correctly deduce M
from the received w, which may or may not have a single bit error? (If w has more than
one error, then the decoder does not have to produce a correct answer.)

Upon receiving a possibly corrupted w, the receiver checks the parity for the rows and
columns by computing the sum of the appropriate data bits and the corresponding parity
bit (all arithmetic in F

2

). By definition, this sum will be 1 if there is a parity error. Then:

•	 If there are no parity errors, then there has not been a single error, so the receiver can
use the data bits as-is for M . This situation is shown in Figure 5-4(a).

•	 If there is single row or column parity error, then the corresponding parity bit is in
error. But the data bits are okay and can be used as-is for M . This situation is shown
in Figure 5-4(c), which has a parity error only in the fourth column.

•	 If there is one row and one column parity error, then the data bit in that row and
column has an error. The decoder repairs the error by flipping that data bit and then
uses the repaired data bits for M . This situation is shown in Figure 5-4(b), where
there are parity errors in the first row and fourth column indicating that d

14 should
be flipped to be a 0.

•	 Other combinations of row and column parity errors indicate that multiple errors
have occurred. There’s no “right” action the receiver can undertake because it
doesn’t have sufficient information to determine which bits are in error. A common
approach is to use the data bits as-is for M . If they happen to be in error, that will be
detected by the error detection code (mentioned near the beginning of this chapter).

This recipe will produce the most likely message, M , from the received codeword if there
has been at most a single transmission error (and if the bit error probability is less than
1/2).

p

In the rectangular code the number of parity bits grows at least as fast as k (it is easy to
verify that the smallest number of parity bits occurs when the number of rows, r, and the
number of columns, c, are equal). Given a fixed amount of communication “bandwidth”

58 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

Figure 5-5: A codeword in systematic form for a block code. Any linear code can be transformed into an

equivalent systematic code.

or resource, we’re interested in devoting as much of it as possible to sending message bits,
not parity bits. Are there other SEC codes that have better code rates than our simple
rectangular code? A natural question to ask is: how little redundancy can we get away with
and still manage to correct errors?

The Hamming code uses a clever construction that uses the intuition developed while
answering the question mentioned above. We answer this question next.

⌅ 5.6 How many parity bits are needed in an SEC code?

Let’s think about what we’re trying to accomplish with an SEC code: the correction of
transmissions that have a single error. For a transmitted message of length n there are
n + 1 situations the receiver has to distinguish between: no errors and a single error in
a specified position along the string of n received bits. Then, depending on the detected
situation, the receiver can make, if necessary, the appropriate correction.

Our first observation, which we will state here without proof, is that any linear code
can be transformed into an equivalent systematic code. A systematic code is one where
every n-bit codeword can be represented as the original k-bit message followed by the
n - k parity bits (it actually doesn’t matter how the original message bits and parity bits
are interspersed). Figure 5-5 shows a codeword in systematic form.

So, given a systematic code, how many parity bits do we absolutely need? We need
to choose n so that single error correction is possible. Since there are n - k parity bits,
each combination of these bits must represent some error condition that we must be able
to correct (or infer that there were no errors). There are 2n-k possible distinct parity bit
combinations, which means that we can distinguish at most that many error conditions.
We therefore arrive at the constraint

n-k n + 1  2 (5.6)

i.e., there have to be enough parity bits to distinguish all corrective actions that might
need to be taken (including no action). Given k, we can determine n - k, the number of
parity bits needed to satisfy this constraint. Taking the log (to base 2) of both sides, we
can see that the number of parity bits must grow at least logarithmically with the number
of message bits. Not all codes achieve this minimum (e.g., the rectangular code doesn’t),
but the Hamming code, which we describe next, does.

We also note that the reasoning here for an SEC code can be extended to determine a

59 SECTION 5.7. HAMMING CODES

d1p1 p2

p3

d2 d3

d4

d1
p1 p2

p3

d2 d3

d4

p4

d9

d11

d10

d6

d7d5

d8

(a) (7,4) code (b) (15,11) code

Figure 5-6: Venn diagrams of Hamming codes showing which data bits are protected by each parity bit.

lower bound on the number of parity bits needed to correct t > 1 errors.

⌅ 5.7 Hamming Codes

Intuitively, it makes sense that for a code to be efficient, each parity bit should protect
as many data bits as possible. By symmetry, we’d expect each parity bit to do the same
amount of “work” in the sense that each parity bit would protect the same number of data
bits. If some parity bit is shirking its duties, it’s likely we’ll need a larger number of parity
bits in order to ensure that each possible single error will produce a unique combination
of parity errors (it’s the unique combinations that the receiver uses to deduce which bit, if
any, had an error).

The class of Hamming single error correcting codes is noteworthy because they are
particularly efficient in the use of parity bits: the number of parity bits used by Hamming
codes grows logarithmically with the size of the codeword. Figure 5-6 shows two examples
of the class: the (7,4) and (15,11) Hamming codes. The (7,4) Hamming code uses 3 parity
bits to protect 4 data bits; 3 of the 4 data bits are involved in each parity computation. The
(15,11) Hamming code uses 4 parity bits to protect 11 data bits, and 7 of the 11 data bits are
used in each parity computation (these properties will become apparent when we discuss
the logic behind the construction of the Hamming code in Section 5.7.1).

Looking at the diagrams, which show the data bits involved in each parity computation,
you should convince yourself that each possible single error (don’t forget errors in one of
the parity bits!) results in a unique combination of parity errors. Let’s work through the
argument for the (7,4) Hamming code. Here are the parity-check computations performed
by the receiver:

E
1 = (d

1 + d
2 + d

4 + p
1

)

E
2 = (d

1 + d
3 + d

4 + p
2

)

E
3 = (d

2 + d
3 + d

4 + p
3

)

60 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

where each Ei is called a syndrome bit because it helps the receiver diagnose the “illness”
(errors) in the received data. For each combination of syndrome bits, we can look for
the bits in each codeword that appear in all the Ei computations that produced 1; these
bits are potential candidates for having an error since any of them could have caused the
observed parity errors. Now eliminate from the candidates those bits that appear in any Ei

computations that produced 0 since those calculations prove those bits didn’t have errors.
We’ll be left with either no bits (no errors occurred) or one bit (the bit with the single error).

For example, if E
1 = 1, E

2 = 0 and E
3 = 1, we notice that bits d

2 and d
4 both appear

in the computations for E
1 and E

3

. However, d
4 appears in the computation for E

2 and
should be eliminated, leaving d

2 as the sole candidate as the bit with the error.
Another example: suppose E

1 = 1, E
2 = 0 and E

3 = 0. Any of the bits appearing in the
computation for E

1 could have caused the observed parity error. Eliminating those that
appear in the computations for E

2 and E
3

, we’re left with p
1

, which must be the bit with
the error.

Applying this reasoning to each possible combination of parity errors, we can make a
table that shows the appropriate corrective action for each combination of the syndrome
bits:

E
3

E
2

E
1

000
001
010
011
100
101
110
111

Corrective Action
no errors
p
1 has an error, flip to correct

p
2 has an error, flip to correct

d
1 has an error, flip to correct

p
3 has an error, flip to correct

d
2 has an error, flip to correct

d
3 has an error, flip to correct

d
4 has an error, flip to correct

⌅ 5.7.1 Is There a Logic to the Hamming Code Construction?

So far so good, but the allocation of data bits to parity-bit computations may seem rather
arbitrary and it’s not clear how to build the corrective action table except by inspection.

The cleverness of Hamming codes is revealed if we order the data and parity bits in a
certain way and assign each bit an index, starting with 1:

index
binary index

1
001

2
010

3
011

4
100

5
101

6
110

7
111

(7,4) code p
1 p

2 d
1 p

3 d
2 d

3 d
4

This table was constructed by first allocating the parity bits to indices that are powers
of two (e.g., 1, 2, 4, . . .). Then the data bits are allocated to the so-far unassigned indicies,
starting with the smallest index. It’s easy to see how to extend this construction to any
number of data bits, remembering to add additional parity bits at indices that are a power
of two.

Allocating the data bits to parity computations is accomplished by looking at their re­
spective indices in the table above. Note that we’re talking about the index in the table, not
the subscript of the bit. Specifically, di is included in the computation of pj if (and only if)

61 SECTION 5.7. HAMMING CODES

the logical AND of binary index(di) and binary index(pj) is non-zero. Put another way, di
is included in the computation of pj if, and only if, index(pj) contributes to index(di) when
writing the latter as sums of powers of 2.

So the computation of p
1 (with an index of 1) includes all data bits with odd indices: d

1

,
d
2 and d

4

. And the computation of p
2 (with an index of 2) includes d

1

, d
3 and d

4

. Finally,
the computation of p

3 (with an index of 4) includes d
2

, d
3 and d

4

. You should verify that
these calculations match the Ei equations given above.

If the parity/syndrome computations are constructed this way, it turns out that E
3

E
2

E
1

,
treated as a binary number, gives the index of the bit that should be corrected. For exam­
ple, if E

3

E
2

E
1 = 101, then we should correct the message bit with index 5, i.e., d

2

. This
corrective action is exactly the one described in the earlier table we built by inspection.

The Hamming code’s syndrome calculation and subsequent corrective action can be ef­
ficiently implemented using digital logic and so these codes are widely used in contexts
where single error correction needs to be fast, e.g., correction of memory errors when fetch­
ing data from DRAM.

⌅ Acknowledgments

Many thanks to Katrina LaCurts and Yury Polyanskiy for carefully reading these notes and
making several useful comments, and to Sigtryggur Kjartansson for detecting an error.

62 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

⌅ Problems and Questions

1. Prove that the Hamming distance satisfies the triangle inequality. That is, show that
HD(x, y) + HD(y, z) � HD(x, z) for any three n-bit binary words.

2. Consider the following rectangular linear block code:

D0 D1 D2 D3 D4 | P0

D5 D6 D7 D8 D9 | P1

D10 D11 D12 D13 D14 | P2

P3 P4 P5 P6 P7 |

Here, D0–D14 are data bits, P0–P2 are row parity bits and P3–P7 are column parity
bits. What are n, k, and d for this linear code?

3. Consider a rectangular parity code as described in Section 5.5. Ben Bitdiddle would
like use this code at a variety of different code rates and experiment with them on
some channel.

(a) Is it possible to obtain a rate lower than 1/3 with this code? Explain your an­
swer.

(b) Suppose he is interested in code rates like 1/2, 2/3, 3/4, etc.; i.e., in general a
`rate of `+1 , for some integer ` > 1. Is it always possible to pick the parameters of

the code (i.e, the block size and the number of rows and columns over which to
`construct the parity bits) so that any such code rate of the form is achievable? l+1

Explain your answer.

4. Two-Bit Communications (TBC), a slightly suspect network provider, uses the fol­
lowing linear block code over its channels. All arithmetic is in F

2

.

P
0 = D

0

, P
1 = (D

0 +D
1

), P
2 = D

1

.

(a) What are n and k for this code?

(b) Suppose we want to perform syndrome decoding over the received bits. Write
out the three syndrome equations for E

0

,E
1

,E
2

.
(c) For the eight possible syndrome values, determine what error can be detected

(none, error in a particular data or parity bit, or multiple errors). Make your
choice using maximum likelihood decoding, assuming a small bit error prob­
ability (i.e., the smallest number of errors that’s consistent with the given syn­
drome).

(d) Suppose that the the 5-bit blocks arrive at the receiver in the following order:
D

0

,D
1

, P
0

, P
1

, P
2

. If 11011 arrives, what will the TBC receiver report as the re­
ceived data after error correction has been performed? Explain your answer.

(e) TBC would like to improve the code rate while still maintaining single-bit error
correction. Their engineer would like to reduce the number of parity bits by 1.
Give the formulas for P

0 and P
1 that will accomplish this goal, or briefly explain

why no such code is possible.

63 SECTION 5.7. HAMMING CODES

5. Pairwise Communications has developed a linear block code over F
2 with three data

and three parity bits, which it calls the pairwise code:

P
1 = D

1 + D
2 (Each Di is a data bit; each Pi is a parity bit.)

P
2 = D

2 + D
3

P
3 = D

3 + D
1

(a) Fill in the values of the following three attributes of this code:
(i) Code rate =

(ii) Number of 1s in a minimum-weight non-zero codeword =

(iii) Minimum Hamming distance of the code =

6. Consider the same “pairwise code” as in the previous problem. The receiver com­
putes three syndrome bits from the (possibly corrupted) received data and parity
bits: E

1 = D
1 + D

2 + P
1

,E
2 = D

2 + D
3 + P

2

, and E
3 = D

3 + D
1 + P

3

. The receiver
performs maximum likelihood decoding using the syndrome bits. For the combi­
nations of syndrome bits in the table below, state what the maximum-likelihood de­
coder believes has occured: no errors, a single error in a specific bit (state which one),
or multiple errors.

E
3

E
2

E
1 Error pattern [No errors / Error in bit ... (specify bit) / Multiple errors]

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

7. Alyssa P. Hacker extends the aforementioned pairwise code by adding an overall par­
ity bit. That is, she computes P

4 =
P

3
(Di + Pi), and appends P

4 to each origi­i=1

nal codeword to produce the new set of codewords. What improvement in error
correction or detection capabilities, if any, does Alyssa’s extended code show over
Pairwise’s original code? Explain your answer.

8. For each of the sets of codewords below, determine whether the code is a linear block
code over F

2 or not. Also give the rate of each code.

(a) {000,001,010,011}.

(b) {000, 011, 110, 101}.

(c) {111, 100, 001, 010}.

(d) {00000, 01111, 10100, 11011}.

(e) {00000}.

64 CHAPTER 5. COPING WITH BIT ERRORS USING ERROR CORRECTION CODES

9. For any linear block code over F
2 with minimum Hamming distance at least 2t+ 1

between codewords, show that:
✓
n
◆ ✓

n
◆ ✓

n
◆

2

n-k
� 1 + + +

1 2 t

Hint: How many errors can such a code always correct?

10. For each (n,k, d) combination below, state whether a linear block code with those
parameters exists or not. Please provide a brief explanation for each case: if such a
code exists, give an example; if not, you may rely on a suitable necessary condition.

(a) (31,26,3): Yes / No

(b) (32,27,3): Yes / No

(c) (43,42,2): Yes / No

(d) (27,18,3): Yes / No

(e) (11,5,5): Yes / No

11. Using the Hamming code construction for the (7,4) code, construct the parity equa­
tions for the (15,11) code. How many equations does this code have? How many
message bits contribute to each parity bit?

12. Prove Theorems 5.2 and 5.3. (Don’t worry too much if you can’t prove the latter; we
will give the proof in the next chapter.)

13. The weight of a codeword in a linear block code over F
2 is the number of 1’s in

the word. Show that any linear block code must either: (1) have only even weight
codewords, or (2) have an equal number of even and odd weight codewords.
Hint: Proof by contradiction.

14. There are N people in a room, each wearing a hat colored red or blue, standing in a
line in order of increasing height. Each person can see only the hats of the people in
front, and does not know the color of his or her own hat. They play a game as a team,
whose rules are simple. Each person gets to say one word: “red” or “blue”. If the
word they say correctly guesses the color of their hat, the team gets 1 point; if they
guess wrong, 0 points. Before the game begins, they can get together to agree on a
protocol (i.e., what word they will say under what conditions). Once they determine
the protocol, they stop talking, form the line, and are given their hats at random.

Can you develop a protocol that will maximize their score? What score does your
protocol achieve?

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

