
MIT 6.02 DRAFT Lecture Notes

Last update: September 17, 2012

CHAPTER 3
Compression Algorithms: Hu↵man

and Lempel-Ziv-Welch (LZW)

This chapter discusses two source coding algorithms to compress messages (a message
is a sequence of symbols). The first, Huffman coding, is efficient when one knows the
probabilities of the different symbols making up a message, and each symbol is drawn
independently from some known distribution. The second, LZW (for Lempel-Ziv-Welch),
is an adaptive compression algorithm that does not assume any knowledge of the symbol
probabilities. Both Huffman codes and LZW are widely used in practice, and are a part of
many real-world standards such as GIF, JPEG, MPEG, MP3, and more.

⌅ 3.1 Properties of Good Source Codes

Suppose the source wishes to send a message, i.e., a sequence of symbols, drawn from
some alphabet. The alphabet could be text, it could be pixel intensities corresponding to
a digitized picture or video obtained from a digital or analog source (we will look at an
example of such a source in more detail in the next chapter), or it could be something more
abstract (e.g., “ONE” if by land and “TWO” if by sea, or h for heavy traffic and ` for light
traffic on a road).

A code is a mapping between symbols and codewords. The reason for doing the map-
ping is that we would like to adapt the message into a form that can be manipulated (pro-
cessed), stored, and transmitted over communication channels. For many channels, code-
words made of a binary-valued quantity are a convenient and effective way to achieve this
goal.

For example, if we want to communicate the grades of students in 6.02, we might use
the following encoding:

“A”! 1
“B”! 01
“C”! 000
“D”! 001

19

20 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

Then, if we want to transmit a sequence of grades, we might end up sending a message
such as 0010001110100001. The receiver can decode this received message as the sequence
of grades “DCAAABCB” by looking up the appropriate contiguous and non-overlapping
substrings of the received message in the code (i.e., the mapping) shared by it and the
source.

Instantaneous codes. A useful property for a code to possess is that a symbol correspond-
ing to a received codeword be decodable as soon as the corresponding codeword is re-
ceived. Such a code is called an instantaneous code. The example above is an instanta-
neous code. The reason is that if the receiver has already decoded a sequence and now
receives a “1”, then it knows that the symbol must be “A”. If it receives a “0”, then it looks
at the next bit; if that bit is “1”, then it knows the symbol is “B”; if the next bit is instead
“0”, then it does not yet know what the symbol is, but the next bit determines uniquely
whether the symbol is “C” (if “0”) or “D” (if “1”). Hence, this code is instantaneous.

Non-instantaneous codes are hard to decode, though they could be uniquely decodable.
For example, consider the following encoding:

“A”! 0
“B”! 01
“C”! 011
“D”! 111

This example code is not instantaneous. If we received the string 01111101, we wouldn’t
be able to decode the first symbol as “A” on seeing the first ’0’. In fact, we can’t be sure
that the first symbol is “B” either. One would, in general, have to wait for the end of the
message, and start the decoding from there. In this case, the sequence of symbols works
out to “BDB”.

This example code turns out to be uniquely decodable, but that is not always the case
with a non-instantaneous code (in contrast, all instantaneous codes admit a unique decod-
ing, which is obviously an important property).

As an example of a non-instantaneous code that is not useful (i.e., not uniquely decod-
able), consider

“A”! 0
“B”! 1
“C”! 01
“D”! 11

With this code, there exist many sequences of bits that do not map to a unique symbol
sequence; for example, “01” could be either “AB” or just “C”.

We will restrict our investigation to only instantaneous codes; most lossless compres-
sion codes are instantaneous.

Code trees and prefix-free codes. A convenient way to visualize codes is using a code tree,
as shown in Figure 3-1 for an instantaneous code with the following encoding:

“A”! 10
“B”! 0
“C”! 110
“D”! 111

SECTION 3.2. HUFFMAN CODES 21

When the encodings are binary-valued strings, the code tree is a rooted binary tree with
the symbols at the nodes of the tree. The edges of the tree are labeled with “0” or “1” to
signify the encoding. To find the encoding of a symbol, the encoder walks the path from
the root (the top-most node) to that symbol, emitting the label on the edges traversed.

If, in a code tree, the symbols are all at the leaves, then the code is said to be prefix-free,
because no codeword is a prefix of another codeword. Prefix-free codes (and code trees)
are naturally instantaneous, which makes them attractive.1

Expected code length. Our final definition is for the expected length of a code. Given N
symbols, with symbol i occurring with probability pi, if we have a code in which symbol i
has length `i inPthe code tree (i.e., the codeword is `i bits long), then the expected length of
the code, L, is N

i=1

pi`i.
In general, codes with small expected code length are interesting and useful because

they allow us to compress messages, delivering messages without any loss of information
but consuming fewer bits than without the code. Because one of our goals in designing
communication systems is efficient sharing of the communication links among different
users or conversations, the ability to send data in as few bits as possible is important.

We say that an instantaneous code is optimal if its expected code length, L, is the min-
imum among all possible such codes. The corresponding code tree gives us the optimal
mapping between symbols and codewords, and is usually not unique. Shannon proved
that the expected code length of any uniquely decodable code cannot be smaller than the
entropy, H , of the underlying probability distribution over the symbols. He also showed
the existence of codes that achieve entropy asymptotically, as the length of the coded
messages approaches 1. Thus, an optimal code will have an expected code length that
matches the entropy for long messages.

The rest of this chapter describes two optimal code constructions ; they are optimal
under certain conditions, stated below. First, we present Huffman codes, which are op-
timal instantaneous codes when the symbols are generated independently from a fixed,
given probability distribution, and we restrict ourselves to “symbol-by-symbol” mapping
of symbols to codewords. It is a prefix-free code, satisfying the property H  L  H + 1.
Second, we present the LZW algorithm, which adapts to the actual distribution of symbols
in the message, not relying on any a priori knowledge of symbol probabilities.

⌅ 3.2 Hu↵man Codes

Huffman codes give an efficient encoding for a list of symbols to be transmitted, when
we know their probabilities of occurrence in the messages to be encoded. We’ll use the
intuition developed in the previous chapter: more likely symbols should have shorter en-
codings, less likely symbols should have longer encodings.

If we draw the variable-length code of Figure 2-2 as a code tree, we’ll get some insight
into how the encoding algorithm should work:
To encode a symbol using the tree, start at the root and traverse the tree until you reach
the symbol to be encoded—the encoding is the concatenation of the branch labels in the
order the branches were visited. The destination node, which is always a “leaf” node for

1Somewhat unfortunately, several papers and books use the term “prefix code” to mean the same thing as
a “prefix-free code”. Caveat lector!

22 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

Figure 3-1: Variable-length code from Figure 2-2 shown in the form of a code tree.

an instantaneous or prefix-free code, determines the path, and hence the encoding. So B is
encoded as 0, C is encoded as 110, and so on. Decoding complements the process, in that
now the path (codeword) determines the symbol, as described in the previous section. So
111100 is decoded as: 111! D, 10! A, 0! B.

Looking at the tree, we see that the more probable symbols (e.g., B) are near the root of
the tree and so have short encodings, while less-probable symbols (e.g., C or D) are further
down and so have longer encodings. David Huffman used this observation while writing
a term paper for a graduate course taught by Bob Fano here at M.I.T. in 1951 to devise an
algorithm for building the decoding tree for an optimal variable-length code.

Huffman’s insight was to build the decoding tree bottom up, starting with the least prob-
able symbols and applying a greedy strategy. Here are the steps involved, along with a
worked example based on the variable-length code in Figure 2-2. The input to the algo-
rithm is a set of symbols and their respective probabilities of occurrence. The output is the
code tree, from which one can read off the codeword corresponding to each symbol.

1. Input: A set S of tuples, each tuple consisting of a message symbol and its associated
probability.

Example: S {(0.333,A), (0.5,B), (0.083,C), (0.083,D)}

2. Remove from S the two tuples with the smallest probabilities, resolving ties arbitrar-
ily. Combine the two symbols from the removed tuples to form a new tuple (which
will represent an interior node of the code tree). Compute the probability of this new
tuple by adding the two probabilities from the tuples. Add this new tuple to S. (If S
had N tuples to start, it now has N � 1, because we removed two tuples and added
one.)

Example: S {(0.333,A), (0.5,B), (0.167,C ^D)}

3. Repeat step 2 until S contains only a single tuple. (That last tuple represents the root
of the code tree.)

Example, iteration 2: S {(0.5,B), (0.5,A^ (C ^D))}

Example, iteration 3: S {(1.0,B ^ (A^ (C ^D)))}

Et voila! The result is a code tree representing a variable-length code for the given symbols
and probabilities. As you’ll see in the Exercises, the trees aren’t always “tall and thin” with
the left branch leading to a leaf; it’s quite common for the trees to be much “bushier.” As

SECTION 3.2. HUFFMAN CODES 23

a simple example, consider input symbols A,B,C,D,E,F,G,H with equal probabilities
of occurrence (1/8 for each). In the first pass, one can pick any two as the two lowest-
probability symbols, so let’s pick A and B without loss of generality. The combined AB
symbol has probability 1/4, while the other six symbols have probability 1/8 each. In the
next iteration, we can pick any two of the symbols with probability 1/8, say C and D.
Continuing this process, we see that after four iterations, we would have created four sets
of combined symbols, each with probability 1/4 each. Applying the algorithm, we find
that the code tree is a complete binary tree where every symbol has a codeword of length
3, corresponding to all combinations of 3-bit words (000 through 111).

Huffman codes have the biggest reduction in the expected length of the encoded mes-
sage (relative to a simple fixed-width encoding using binary enumeration) when some
symbols are substantially more probable than other symbols. If all symbols are equiprob-
able, then all codewords are roughly the same length, and there are (nearly) fixed-length
encodings whose expected code lengths approach entropy and are thus close to optimal.

⌅ 3.2.1 Properties of Hu↵man Codes

We state some properties of Huffman codes here. We don’t prove these properties formally,
but provide intuition about why they hold.

1/8$ 1/8$ 1/8$ 1/8$

1/4$ 1/4$

1/8$ 1/8$ 1/8$ 1/8$

1/4$ 1/4$

Figure 3-2: An example of two non-isomorphic Huffman code trees, both optimal.

Non-uniqueness. In a trivial way, because the 0/1 labels on any pair of branches in a
code tree can be reversed, there are in general multiple different encodings that all have
the same expected length. In fact, there may be multiple optimal codes for a given set of
symbol probabilities, and depending on how ties are broken, Huffman coding can produce
different non-isomorphic code trees, i.e., trees that look different structurally and aren’t just
relabelings of a single underlying tree. For example, consider six symbols with proba-
bilities 1/4,1/4,1/8,1/8,1/8,1/8. The two code trees shown in Figure 3-2 are both valid
Huffman (optimal) codes.

Optimality. Huffman codes are optimal in the sense that there are no other codes with
shorter expected length, when restricted to instantaneous (prefix-free) codes, and symbols
in the messages are drawn in independent fashion from a fixed, known probability distri-
bution.

24 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

We state here some propositions that are useful in establishing the optimality of Huff-
man codes.

Proposition 3.1 In any optimal code tree for a prefix-free code, each node has either zero or two
children.

To see why, suppose an optimal code tree has a node with one child. If we take that node
and move it up one level to its parent, we will have reduced the expected code length, and
the code will remain decodable. Hence, the original tree was not optimal, a contradiction.

Proposition 3.2 In the code tree for a Huffman code, no node has exactly one child.

To see why, note that we always combine the two lowest-probability nodes into a single
one, which means that in the code tree, each internal node (i.e., non-leaf node) comes from
two combined nodes (either internal nodes themselves, or original symbols).

Proposition 3.3 There exists an optimal code in which the two least-probable symbols:

• have the longest length, and

• are siblings, i.e., their codewords differ in exactly the one bit (the last one).

Proof. Let z be the least-probable symbol. If it is not at maximum depth in the optimal code
tree, then some other symbol, call it s, must be at maximum depth. But because pz < ps, if
we swapped z and s in the code tree, we would end up with a code with smaller expected
length. Hence, z must have a codeword at least as long as every other codeword.

Now, symbol z must have a sibling in the optimal code tree, by Proposition 3.1. Call it
x. Let y be the symbol with second lowest probability; i.e., px � py � pz . If px = py, then the
proposition is proved. Let’s swap x and y in the code tree, so now y is a sibling of z. The
expected code length of this code tree is not larger than the pre-swap optimal code tree,
because px is strictly greater than py, proving the proposition. ⌅

Theorem 3.1 Huffman coding produces a code tree whose expected length is optimal, when re-
stricted to symbol-by-symbol coding with symbols drawn independently from a fixed, known sym-
bol probability distribution.

Proof. Proof by induction on n, the number of symbols. Let the symbols be
x
1

, x
2

, . . . , xn 1

, xn and let their respective probabilities of occurrence be p� 1

� p
2

� . . . �
pn 1

� pn. From Proposition 3.3, there exists an optimal code tree in which xn 1

and x� � n

have the longest length and are siblings.
Inductive hypothesis: Assume that Huffman coding produces an optimal code tree on

an input with n� 1 symbols with associated probabilities of occurrence. The base case is
trivial to verify.

Let Hn be the expected cost of the code tree generated by Huffman coding on the n
symbols x

1

, x
2

, . . . , xn. Then, Hn = Hn + p + p , where H is the expected cost of�1 n�1 n n�1

SECTION 3.3. LZW: AN ADAPTIVE VARIABLE-LENGTH SOURCE CODE 25

the code tree generated by Huffman coding on n� 1 input symbols x
1

, x
2

, . . . xn�2

, xn�1,n

with probabilities p
1

, p
2

, . . . , pn�2

, (pn�1

+ pn).
By the inductive hypothesis, Hn�1

= Ln�1

, the expected length of the optimal code tree
over n� 1 symbols. Moreover, from Proposition 3.3, there exists an optimal code tree over
n symbols for which Ln = Ln 1

+ (pn 1

+ pn). Hence, there exists an optimal code tree� �
whose expected cost, Ln, is equal to the expected cost, Hn, of the Huffman code over the n
symbols. ⌅

Huffman coding with grouped symbols. The entropy of the distribution shown in Figure
2-2 is 1.626. The per-symbol encoding of those symbols using Huffman coding produces
a code with expected length 1.667, which is noticeably larger (e.g., if we were to encode
10,000 grades, the difference would be about 410 bits). Can we apply Huffman coding to
get closer to entropy?

One approach is to group symbols into larger “metasymbols” and encode those instead,
usually with some gain in compression but at a cost of increased encoding and decoding
complexity.

Consider encoding pairs of symbols, triples of symbols, quads of symbols, etc. Here’s a
tabulation of the results using the grades example from Figure 2-2:

Size of
grouping

Number of
leaves in tree

Expected length
for 1000 grades

1
2
3
4

Figure 3-3: Results

4
16
64
256

from encoding mo

1667
1646
1637
1633

re than one grade at a time.

We see that we can come closer to the Shannon lower bound (i.e., entropy) of 1.626 bits
by encoding grades in larger groups at a time, but at a cost of a more complex encoding
and decoding process. If K symbols are grouped, then the expected code length L satisfies
H  L  H + 1/K, so as one makes K larger, one gets closer to the entropy bound.

This approach still has two significant problems: first, it requires knowledge of the
individual symbol probabilities, and second, it assumes that the symbol selection is inde-
pendent and from a fixed, known distribution at each position in all messages. In practice,
however, symbol probabilities change message-to-message, or even within a single mes-
sage.

This last observation suggests that it would be useful to create an adaptive variable-
length encoding that takes into account the actual content of the message. The LZW algo-
rithm, presented in the next section, is such a method.

⌅ 3.3 LZW: An Adaptive Variable-length Source Code

Let’s first understand the compression problem better by considering the problem of dig-
itally representing and transmitting the text of a book written in, say, English. A simple
approach is to analyze a few books and estimate the probabilities of different letters of the

26 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

alphabet. Then, treat each letter as a symbol and apply Huffman coding to compress the
document of interest.

This approach is reasonable but ends up achieving relatively small gains compared to
the best one can do. One big reason is that the probability with which a letter appears
in any text is not always the same. For example, a priori, “x” is one of the least frequently
appearing letters, appearing only about 0.3% of the time in English text. But in the sentence
“... nothing can be said to be certain, except death and ta ”, the next letter is almost
certainly an “x”. In this context, no other letter can be more certain!

Another reason why we might expect to do better than Huffman coding is that it is often
unclear at what level of granularity the symbols should be chosen or defined. For English
text, because individual letters vary in probability by context, we might be tempted to use
words as the primitive symbols for coding. It turns out that word occurrences also change
in probability depend on context.

An approach that adapts to the material being compressed might avoid these shortcom-
ings. One approach to adaptive encoding is to use a two pass process: in the first pass,
count how often each symbol (or pairs of symbols, or triples—whatever level of grouping
you’ve chosen) appears and use those counts to develop a Huffman code customized to
the contents of the file. Then, in the second pass, encode the file using the customized
Huffman code. This strategy is expensive but workable, yet it falls short in several ways.
Whatever size symbol grouping is chosen, it won’t do an optimal job on encoding recur-
ring groups of some different size, either larger or smaller. And if the symbol probabilities
change dramatically at some point in the file, a one-size-fits-all Huffman code won’t be
optimal; in this case one would want to change the encoding midstream.

A different approach to adaptation is taken by the popular Lempel-Ziv-Welch (LZW)
algorithm. This method was developed originally by Ziv and Lempel, and subsequently
improved by Welch. As the message to be encoded is processed, the LZW algorithm builds
a string table that maps symbol sequences to/from an N -bit index. The string table has 2N

entries and the transmitted code can be used at the decoder as an index into the string
table to retrieve the corresponding original symbol sequence. The sequences stored in
the table can be arbitrarily long. The algorithm is designed so that the string table can
be reconstructed by the decoder based on information in the encoded stream—the table,
while central to the encoding and decoding process, is never transmitted! This property is
crucial to the understanding of the LZW method.

When encoding a byte stream,2 the first 28 = 256 entries of the string table, numbered 0

through 255, are initialized to hold all the possible one-byte sequences. The other entries
will be filled in as the message byte stream is processed. The encoding strategy works as
follows and is shown in pseudo-code form in Figure 3-4. First, accumulate message bytes
as long as the accumulated sequences appear as some entry in the string table. At some
point, appending the next byte b to the accumulated sequence S would create a sequence
S + b that’s not in the string table, where + denotes appending b to S. The encoder then
executes the following steps:

1. It transmits the N -bit code for the sequence S.
2. It adds a new entry to the string table for S + b. If the encoder finds the table full

when it goes to add an entry, it reinitializes the table before the addition is made.

2A byte is a contiguous string of 8 bits.

SECTION 3.3. LZW: AN ADAPTIVE VARIABLE-LENGTH SOURCE CODE 27

initialize TABLE[0 to 255] = code for individual bytes
STRING = get input symbol
while there are still input symbols:

SYMBOL = get input symbol
if STRING + SYMBOL is in TABLE:

STRING = STRING + SYMBOL
else:

output the code for STRING
add STRING + SYMBOL to TABLE
STRING = SYMBOL

output the code for STRING

Figure 3-4: Pseudo-code for the LZW adaptive variable-length encoder. Note that some details, like dealing
with a full string table, are omitted for simplicity.

initialize TABLE[0 to 255] = code for individual bytes
CODE = read next code from encoder
STRING = TABLE[CODE]
output STRING

while there are still codes to receive:
CODE = read next code from encoder
if TABLE[CODE] is not defined: // needed because sometimes the

ENTRY = STRING + STRING[0] // decoder may not yet have entry!
else:

ENTRY = TABLE[CODE]
output ENTRY
add STRING+ENTRY[0] to TABLE
STRING = ENTRY

Figure 3-5: Pseudo-code for LZW adaptive variable-length decoder.

3. it resets S to contain only the byte b.
This process repeats until all the message bytes are consumed, at which point the en-

coder makes a final transmission of the N -bit code for the current sequence S.
Note that for every transmission done by the encoder, the encoder makes a new entry

in the string table. With a little cleverness, the decoder, shown in pseudo-code form in
Figure 3-5, can figure out what the new entry must have been as it receives each N-bit
code. With a duplicate string table at the decoder constructed as the algorithm progresses
at the decoder, it is possible to recover the original message: just use the received N -bit
code as index into the decoder’s string table to retrieve the original sequence of message
bytes.

Figure 3-6 shows the encoder in action on a repeating sequence of abc. Notice that:

• The encoder algorithm is greedy—it is designed to find the longest possible match
in the string table before it makes a transmission.

28 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

S msg. byte lookup result transmit string table
– a – – – –
a b ab not found index of a table[256] = ab
b c bc not found index of b table[257] = bc
c a ca not found index of c table[258] = ca
a b ab found – –
ab c abc not found 256 table[259] = abc
c a ca found – –
ca b cab not found 258 table[260] = cab
b c bc found – –
bc a bca not found 257 table[261] = bca
a b ab found – –
ab c abc found – –
abc a abca not found 259 table[262] = abca
a b ab found – –
ab c abc found – –
abc a abca found – –
abca b abcab not found 262 table[263] = abcab
b c bc found – –
bc a bca found – –
bca b bcab not found 261 table[264] = bcab
b c bc found – –
bc a bca found – –
bca b bcab found – –
bcab c bcabc not found 264 table[265] = bcabc
c a ca found – –
ca b cab found – –
cab c cabc not found 260 table[266] = cabc
c a ca found – –
ca b cab found – –
cab c cabc found – –
cabc a cabca not found 266 table[267] = cabca
a b ab found – –
ab c abc found – –
abc a abca found – –
abca b abcab found – –
abcab c abcabc not found 263 table[268] = abcabc
c – end – – – index of c –

Figure 3-6: LZW encoding of string “abcabcabcabcabcabcabcabcabcabcabcabc”

SECTION 3.3. LZW: AN ADAPTIVE VARIABLE-LENGTH SOURCE CODE 29

received string table decoding
a – a
b table[256] = ab b
c table[257] = bc c
256 table[258] = ca ab
258 table[259] = abc ca
257 table[260] = cab bc
259 table[261] = bca abc
262 table[262] = abca abca
261 table[263] = abcab bca
264 table[264] = bcab bcab
260 table[265] = bcabc cab
266 table[266] = cabc cabc
263 table[267] = cabca abcab
c table[268] = abcabc c

Figure 3-7: LZW decoding of the sequence a, b, c,256,258,257,259,262,261,264,260,266,263, c

• The string table is filled with sequences actually found in the message stream. No
encodings are wasted on sequences not actually found in the file.

• Since the encoder operates without any knowledge of what’s to come in the message
stream, there may be entries in the string table that don’t correspond to a sequence
that’s repeated, i.e., some of the possible N -bit codes will never be transmitted. This
property means that the encoding isn’t optimal—a prescient encoder could do a bet-
ter job.

• Note that in this example the amount of compression increases as the encoding pro-
gresses, i.e., more input bytes are consumed between transmissions.

• Eventually the table will fill and then be reinitialized, recycling the N-bit codes for
new sequences. So the encoder will eventually adapt to changes in the probabilities
of the symbols or symbol sequences.

Figure 3-7 shows the operation of the decoder on the transmit sequence produced in
Figure 3-6. As each N -bit code is received, the decoder deduces the correct entry to make
in the string table (i.e., the same entry as made at the encoder) and then uses the N -bit
code as index into the table to retrieve the original message sequence.

There is a special case, which turns out to be important, that needs to be dealt with.
There are three instances in Figure 3-7 where the decoder receives an index (262,264,266)
that it has not previously entered in its string table. So how does it figure out what these
correspond to? A careful analysis, which you could do, shows that this situation only
happens when the associated string table entry has its last symbol identical to its first
symbol. To handle this issue, the decoder can simply complete the partial string that it is
building up into a table entry (abc, bac, cab respectively, in the three instances in Figure 3-
7) by repeating its first symbol at the end of the string (to get abca, bacb, cabc respectively,
in our example), and then entering this into the string table. This step is captured in the
pseudo-code in Figure 3-5 by the logic of the “if” statement there.

30 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

We conclude this chapter with some interesting observations about LZW compression:

• A common choice for the size of the string table is 4096 (N = 12). A larger table
means the encoder has a longer memory for sequences it has seen and increases
the possibility of discovering repeated sequences across longer spans of message.
However, dedicating string table entries to remembering sequences that will never
be seen again decreases the efficiency of the encoding.

• Early in the encoding, the encoder uses entries near the beginning of the string table,
i.e., the high-order bits of the string table index will be 0 until the string table starts
to fill. So the N -bit codes we transmit at the outset will be numerically small. Some
variants of LZW transmit a variable-width code, where the width grows as the table
fills. If N = 12, the initial transmissions may be only 9 bits until entry number 511 in
the table is filled (i.e., 512 entries filled in all), then the code expands to 10 bits, and
so on, until the maximum width N is reached.

• Some variants of LZW introduce additional special transmit codes, e.g., CLEAR to
indicate when the table is reinitialized. This allows the encoder to reset the table
pre-emptively if the message stream probabilities change dramatically, causing an
observable drop in compression efficiency.

• There are many small details we haven’t discussed. For example, when sending N -
bit codes one bit at a time over a serial communication channel, we have to specify
the order in the which the N bits are sent: least significant bit first, or most significant
bit first. To specify N , serialization order, algorithm version, etc., most compressed
file formats have a header where the encoder can communicate these details to the
decoder.

⌅ 3.4 Acknowledgments

Thanks to Yury Polyanskiy and Anirudh Sivaraman for several useful comments and to
Alex Kiefer and Muyiwa Ogunnika for bug fixes.

⌅ Exercises

1. Huffman coding is used to compactly encode the species of fish tagged by a game
warden. If 50% of the fish are bass and the rest are evenly divided among 15 other
species, how many bits would be used to encode the species when a bass is tagged?

2. Consider a Huffman code over four symbols, A, B, C, and D. Which of these is a
valid Huffman encoding? Give a brief explanation for your decisions.

(a) A : 0,B : 11,C : 101,D : 100.

(b) A : 1,B : 01,C : 00,D : 010.

(c) A : 00,B : 01,C : 110,D : 111

SECTION 3.4. ACKNOWLEDGMENTS 31

3. Huffman is given four symbols, A, B, C, and D. The probability of symbol A oc-
curring is pA, symbol B is pB , symbol C is pC , and symbol D is pD, with pA � pB �
pC � pD. Write down a single condition (equation or inequality) that is both nec-
essary and sufficient to guarantee that, when Huffman constructs the code bearing
his name over these symbols, each symbol will be encoded using exactly two bits.
Explain your answer.

4. Describe the contents of the string table created when encoding a very long string
of all a’s using the simple version of the LZW encoder shown in Figure 3-4. In this
example, if the decoder has received E encoded symbols (i.e., string table indices)
from the encoder, how many a’s has it been able to decode?

5. Consider the pseudo-code for the LZW decoder given in Figure 3-4. Suppose that
this decoder has received the following five codes from the LZW encoder (these are
the first five codes from a longer compression run):

97 -- index of ’a’ in the translation table
98 -- index of ’b’ in the translation table
257 -- index of second addition to the translation table
256 -- index of first addition to the translation table
258 -- index of third addition to in the translation table

After it has finished processing the fifth code, what are the entries in the translation
table and what is the cumulative output of the decoder?

table[256]:

table[257]:

table[258]:

table[259]:

cumulative output from decoder:

6. Consider the LZW compression and decompression algorithms as described in this
chapter. Assume that the scheme has an initial table with code words 0 through 255
corresponding to the 8-bit ASCII characters; character “a” is 97 and “b” is 98. The
receiver gets the following sequence of code words, each of which is 10 bits long:

97 97 98 98 257 256

(a) What was the original message sent by the sender?

(b) By how many bits is the compressed message shorter than the original message
(each character in the original message is 8 bits long)?

(c) What is the first string of length 3 added to the compression table? (If there’s no
such string, your answer should be “None”.)

7. Explain whether each of these statements is True or False. Recall that a codeword in
LZW is an index into the string table.

32 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

(a) Suppose the sender adds two strings with corresponding codewords c
1

and c
2

in that order to its string table. Then, it may transmit c
2

for the first time before
it transmits c

1

.

(b) Suppose the string table never gets full. If there is an entry for a string s in the
string table, then the sender must have previously sent a distinct codeword for
every non-null prefix of string s. (If s⌘ p+ s0 where + is the string concatenation
operation and s0 is some non-null string, then p is said to be a prefix of s.)

8. Green Eggs and Hamming. By writing Green Eggs and Ham, Dr. Seuss won a $50 bet
with his publisher because he used only 50 distinct English words in the entire book
of 778 words. The probabilities of occurrence of the most common words in the book
are given in the table below, in decreasing order:

Rank Word Probability of occurrence of word in book
1 not 10.7%
2 I 9.1%
3 them 7.8%
4 a 7.6%
5 like 5.7%
6 in 5.1%
7 do 4.6%
8 you 4.4%

9–50 (all other words) 45.0%

(a) I pick a secret word from the book.

The Bofa tells you that the secret word is one of the 8 most common
words in the book.
Yertle tells you it is not the word “not”.
The Zlock tells you it is three letters long.

Express your answers to the following in log

2

(

100

) form, which will be conve-·
nient; you don’t need to give the actual numerical value. (The 100 is because
the probabilities in the table are shown as percentages.)
How many bits of information about the secret word have you learned from:

The Bofa alone?
Yertle alone?
The Bofa and the Zlock together?
All of them together?

(b) The Lorax decides to compress Green Eggs and Ham using Huffman coding,
treating each word as a distinct symbol, ignoring spaces and punctuation
marks. He finds that the expected code length of the Huffman code is 4.92 bits.
The average length of a word in this book is 3.14 English letters. Assume that in
uncompressed form, each English letter requires 8 bits (ASCII encoding). Recall
that the book has 778 total words (and 50 distinct ones).

SECTION 3.4. ACKNOWLEDGMENTS 33

i. What is the uncompressed (ASCII-encoded) length of the book? Show your
calculations.

ii. What is the expected length of the Huffman-coded version of the book?
Show your calculations.

iii. The words “if” and “they” are the two least popular words in the book.
In the Huffman-coded format of the book, what is the Hamming distance
between their codewords?

(c) The Lorax now applies Huffman coding to all of Dr. Seuss’s works. He treats
each word as a distinct symbol. There are n distinct words in all. Curiously, he
finds that the most popular word (symbol) is represented by the codeword 0

in the Huffman encoding.
Symbol i occurs with probability pi;p1 � p

2

� p
3

. . . � pn. Its length in the Huff-
man code tree is `i.

i. Given the conditions above, is it True or False that p
1

� 1/3?
ii. Given the conditions above, is it True or False that p

1

�

Pn
i=3

pi?
iii. The Grinch removes the most-popular symbol (whose probability is p

1

) and
implements Huffman coding over the remaining symbols, retaining the
same probabilities proportionally; i.e., the probability of symbol i (where
i > 1) is now p

i

1 p1
. WhatP is the expected code length of the Grinch’s code�

tree, in terms of L =

n
i=1

pi`i (the expected code length of the original code
tree) and p

1

? Explain your answer.

(d) The Cat in the Hat compresses Green Eggs and Ham with the LZW compression
method described in 6.02 (codewords from 0 to 255 are initialized to the corre-
sponding ASCII characters, which includes all the letters of the alphabet and
the space character). The book begins with these lines:

I am Sam
I am Sam
Sam I am

We have replaced each space with an underscore () for clarity, and eliminated
punctuation marks.

i. What are the strings corresponding to codewords 256 and 257 in the string
table?

ii. When compressed, the sequence of codewords starts with the codeword 73,
which is the ASCII value of I. The initial few codewords in this sequence
will all be  255, and then one codeword > 255 will appear. What string
does that codeword correspond to?

iii. Cat finds that codeword 700 corresponds to the string I do not l. This string
comes from the sentence I do not like them with a mouse in the book. What
are the first two letters of the codeword numbered 701 in the string table?

iv. Thanks to a stuck keyboard (or because Cat is an ABBA fan), the phrase
IdoIdoIdoIdoIdo shows up at the input to the LZW compressor. The decom-
pressor gets a codeword, already in its string table, and finds that it cor-
responds to the string Ido. This codeword is followed immediately by a

34 CHAPTER 3. COMPRESSION ALGORITHMS: HUFFMAN AND LEMPEL-ZIV-WELCH (LZW)

new codeword not in its string table. What string should the decompressor
return for this new codeword?

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

