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* Sliding window protocol analysis
* Bandwidth-delay product & queues
* Packet loss performance

« Little’s law

Sliding Window: Handling Packet Loss
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Sliding Window: Handling Packet Loss
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Data packet 2 is lost. The receiver must save packets all later
packets until packet 2 arrives, to deliver them to the application in

proper order. Note that with our definition of the window, there’s
no limit to the number of packets that might arrive out of order.

Q: Can the receiver discard these later packets (3, 4, ..., 12?)
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Sliding Window Implementation

Transmitter
— Each packet includes a sequentially increasing sequence number
— When transmitting, save (xmit time,packet) on un-ACKed list
— Transmit packets if len(un-ACKed list) < window size W
— When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list
— Periodically check un-ACKed list for packets sent awhile ago
* Retransmit, update xmit time in case we have to do it again!
« “awhile ago”: xmit time < now — timeout
Receiver
— Send ACK for each received packet, reference sequence number
— Deliver packet payload to application in sequence number order
» Save delivered packets in sequence number order in local buffer
(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).
» Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

Little' s Law

n(t) = # pkts at time t in queue

FGH
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e P packets are forwarded in time T (assume T large)
e Rate= A =P/T

¢ Let A = area under the n(t) curve from O to T

¢ Mean number of packets in queue = N = A/T

e Ais aggregate delay weighted by each packet’s time in queue.

So, mean delay D per packet = A/P
e Therefore, N= A D < Little’s Law
e For a given link rate, increasing queue size increases delay

How to Set the Window Size to Maximize Throughput?
Apply Little’s Law

Host A Host B

aui ],

+ If we can get Idle to O, will achieve goal

* W = #packets in window
* B = rate of slowest (bottleneck) link in
packets/second
* RTT,_;,= Min RTT along path, in the
absence of any queueing (in seconds)
+ If W= B-RTT,,,, then path is fully
utilized (if no losses occur)
— B‘RTT,,, is the “bandwidth-delay
product”
— A key concept in the performance of
windowed transport protocols

Throughput of Sliding Window Protocol

« If there are no lost packets, protocol delivers W packets every
RTT seconds, so throughput is W/RTT
* Goal: to achieve high utilization, select W so that the
bottleneck link is never idle due to lack of packets
« Without packet losses:
— Throughput = W/RTT,,;,, if W < B-RTT,
= B otherwise
— If W > B-RTT,,;,, then W = B-RTT,;, + Q, where Q is the queue
occupancy
« With packet losses:
— Pick W > B'-RTT,,;,
are packet losses

min>

min>

to ensure bottleneck link is busy even if there

— Expected # of transmissions, T, for successful delivery of pkt and
ACK satisfies: T = (1-L) -1 + L-(1 + T), so T = 1/(1-L),
where L = Prob(either packet OR its ACK is lost)
— Therefore, throughput = (1-L)*B
« If W >>B-RTT,;,, then delays too large, timeout too big, and
other connections may suffer

12/3/12



Example

Queue 5
T 10° bytes/s 0z bytes/s
Sender Switch Receiver

R 10 bytes/s D 10° bytes/s 7
M o ~ -

Propagation delay =~ One-way propagation delay
=0 milliseconds =10 milliseconds

Max queue size = 30 packets

Packet size = 1000 bytes

ACK size = 40 bytes

Initial sender window size = 10 packets

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

A: 10 packets / 21 ms, = 476 packets/second

Example (cont.)

Q: You would like to roughly

UeUe 106 bytes/s louble the throughput of our
Sender [oo PR A liding window t t protocol
ender witc eceiver | ]iding window transport protocol.
_ 10%bytes/s //(\ 10° bytes/s % N g P p
~2 o ~o i o do so, you can apply one of the

Propagation delay ~ One-way propagation delay DHOWIng techmques.

=0 milliseconds = 10 milliseconds .. Double window size W
). Halve the propagation delay of
Max queue size = 30 packets the links
:aCCK";‘Z:”: 431?:"2:"‘95 .. Double the rate of the link
Initial sender window size = 10 packets between the Switch and
Receiver

Q: For each of the following sender window sizes (in packets),
list which of the above technique(s), if any, can approximately
double the throughput: W=10, W=50, W=30.

Solutions to Example

Note that BW-delay product on given path = 20 packets
W=10
— Doubling window size ~doubles throughput (BW-delay product is
20 on path)
— Halving RTT ~doubles throughput (since now BW-delay product
would be 10, equal to window size)
— Doubling bottleneck link rate won’t change throughput much!
W=50
— Doubling window size won’t change throughput (we'’re already
saturating the bottleneck link)
— Halving RTT won'’t change throughput (same reason)
— Doubling bottleneck link speed will ~double throughput because
new bw-delay product doubles to 40, and W=50 > 40
W=30 (trickiest case)
— Doubling window size or halving RTT: no effect

— Doubling bottleneck link changes BW-delay product to 40. W is
still lower than 40, so throughput won’t double. But it’ll certainly
increase, by perhaps about 50% more from before

RTT Measurements

lancelet.caida.org to anala o
rtt median-filtered

[ packet loss

Courtesy of the Cooperative Association for Internet Data Analysis. Used with permission.
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Figure 1: Round-trip time during a TCP download on
the Verizon LTE network in Cambridge, Mass., Oct. 14,

2011 at 3 p.m.
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CDF of RTT over Verizon Wireless 3G Network

umulative probability (CDF)

o8 Mean > 1.5 seconds
Std dev > 1.5 seconds .
In this data set,
i if we pick a timeout
of 6 seconds, then
P(spurious rxmit) is
A about 3%.
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