DIGITAL
COMMUNICATION
SYSTEMS

6.02 Fall 2012
Lecture #22

* Sliding window protocol analysis
* Bandwidth-delay product & queues
* Packet loss performance

« Little’s law

Sliding Window: Handling Packet Loss

window = 1-5
window = 2-6

1 23 4 5|6
Sy | [[0) -

Sliding Window: Handling Packet Loss

Timeout

1 23 456 7 8 910 1112 | 2
Sndr] () Y Y () [,---- L]

/’ /’ /ﬁ
al L a].Q alﬁ

Revr

pl p3 p4p5 pb p7 P8 P9pl10 pllipl2 p2
Data packet 2 is lost. The receiver must save packets all later
packets until packet 2 arrives, to deliver them to the application in

proper order. Note that with our definition of the window, there’s
no limit to the number of packets that might arrive out of order.

Q: Can the receiver discard these later packets (3, 4, ..., 12?)

Revr
Data/ACK sequence trace
"Ir‘ace2»seq" +

680 "trace2-ack" x
o e v
9 L
g 660 e X
g T Window?

4 x X
) Lo 5%
© e A a
g o e
Lt X XSRS
g - ++ RTTX):a X P;C x
Q L+ T M X
Vi SRTOC X
) L L
Q +++++ ><><><><><
< ol 2R oY L
< 60 s ERKIT ACKs for rxmitted
2

s o2 packets (most probably)
A © ®

580 2

560

800 820 840 860 880 900

Time (ms)

12/3/12

Sliding Window Implementation

Transmitter
— Each packet includes a sequentially increasing sequence number
— When transmitting, save (xmit time,packet) on un-ACKed list
— Transmit packets if len(un-ACKed list) < window size W
— When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list
— Periodically check un-ACKed list for packets sent awhile ago
* Retransmit, update xmit time in case we have to do it again!
« “awhile ago”: xmit time < now — timeout
Receiver
— Send ACK for each received packet, reference sequence number
— Deliver packet payload to application in sequence number order
» Save delivered packets in sequence number order in local buffer
(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).
» Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

Little' s Law

n(t) = # pkts at time t in queue

FGH
Tt

e P packets are forwarded in time T (assume T large)
e Rate= A =P/T

¢ Let A = area under the n(t) curve from O to T

¢ Mean number of packets in queue = N = A/T

e Ais aggregate delay weighted by each packet’s time in queue.

So, mean delay D per packet = A/P
e Therefore, N= A D < Little’s Law
e For a given link rate, increasing queue size increases delay

How to Set the Window Size to Maximize Throughput?
Apply Little’s Law

Host A Host B

aui],

+ If we can get Idle to O, will achieve goal

* W = #packets in window
* B = rate of slowest (bottleneck) link in
packets/second
* RTT,_;,= Min RTT along path, in the
absence of any queueing (in seconds)
+ If W= B-RTT,,,, then path is fully
utilized (if no losses occur)
— B‘RTT,,, is the “bandwidth-delay
product”
— A key concept in the performance of
windowed transport protocols

Throughput of Sliding Window Protocol

« If there are no lost packets, protocol delivers W packets every
RTT seconds, so throughput is W/RTT
* Goal: to achieve high utilization, select W so that the
bottleneck link is never idle due to lack of packets
« Without packet losses:
— Throughput = W/RTT,,;,, if W < B-RTT,
= B otherwise
— If W > B-RTT,,;,, then W = B-RTT,;, + Q, where Q is the queue
occupancy
« With packet losses:
— Pick W > B'-RTT,,;,
are packet losses

min>

min>

to ensure bottleneck link is busy even if there

— Expected # of transmissions, T, for successful delivery of pkt and
ACK satisfies: T = (1-L) -1 + L-(1 + T), so T = 1/(1-L),
where L = Prob(either packet OR its ACK is lost)
— Therefore, throughput = (1-L)*B
« If W >>B-RTT,;,, then delays too large, timeout too big, and
other connections may suffer

12/3/12

Example

Queue 5
T 10° bytes/s 0z bytes/s
Sender Switch Receiver

R 10 bytes/s D 10° bytes/s 7
M o ~ -

Propagation delay =~ One-way propagation delay
=0 milliseconds =10 milliseconds

Max queue size = 30 packets

Packet size = 1000 bytes

ACK size = 40 bytes

Initial sender window size = 10 packets

Q: The sender’s window size is 10 packets. At what
approximate rate (in packets per second) will the protocol
deliver a multi-gigabyte file from the sender to the receiver?
Assume that there is no other traffic in the network and
packets can only be lost because the queues overflow.

A: 10 packets / 21 ms, = 476 packets/second

Example (cont.)

Q: You would like to roughly

UeUe 106 bytes/s louble the throughput of our
Sender [oo PR A liding window t t protocol
ender witc eceiver |]iding window transport protocol.
_ 10%bytes/s //(\ 10° bytes/s % N g P p
~2 o ~o i o do so, you can apply one of the

Propagation delay ~ One-way propagation delay DHOWIng techmques.

=0 milliseconds = 10 milliseconds .. Double window size W
). Halve the propagation delay of
Max queue size = 30 packets the links
:aCCK";‘Z:”: 431?:"2:"‘95 .. Double the rate of the link
Initial sender window size = 10 packets between the Switch and
Receiver

Q: For each of the following sender window sizes (in packets),
list which of the above technique(s), if any, can approximately
double the throughput: W=10, W=50, W=30.

Solutions to Example

Note that BW-delay product on given path = 20 packets
W=10
— Doubling window size ~doubles throughput (BW-delay product is
20 on path)
— Halving RTT ~doubles throughput (since now BW-delay product
would be 10, equal to window size)
— Doubling bottleneck link rate won’t change throughput much!
W=50
— Doubling window size won’t change throughput (we'’re already
saturating the bottleneck link)
— Halving RTT won'’t change throughput (same reason)
— Doubling bottleneck link speed will ~double throughput because
new bw-delay product doubles to 40, and W=50 > 40
W=30 (trickiest case)
— Doubling window size or halving RTT: no effect

— Doubling bottleneck link changes BW-delay product to 40. W is
still lower than 40, so throughput won’t double. But it’ll certainly
increase, by perhaps about 50% more from before

RTT Measurements

lancelet.caida.org to anala o
rtt median-filtered

[packet loss

Courtesy of the Cooperative Association for Internet Data Analysis. Used with permission.

12/3/12

Figure 1: Round-trip time during a TCP download on
the Verizon LTE network in Cambridge, Mass., Oct. 14,

2011 at 3 p.m.

10+

Round-trip time (s)

o ceo
- bale

L]

00 150 200 250
Time (s)

|http://nms.csai|.mit.edu/papers/index.php?detail=208

© Association for Computing Machinery. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Delay (milliseconds)

14000

12000

10600

2000

6000

4000

2600

AT&T Wireless on iPhone 3G

Ping

mu: 1697.2 ms
stddev: 2346.5 ms
min:155.6 ms
max:12126.6 ms

Tatency

* g«,@
o 09
¢ P
¢
. 3 .y]
° $.s
A @ o o
R o0 i
$eto
F e
4
1 ’“""P’i!!g)
200 400 500

C

10

CDF of RTT over Verizon Wireless 3G Network

umulative probability (CDF)

o8 Mean > 1.5 seconds
Std dev > 1.5 seconds .
In this data set,
i if we pick a timeout
of 6 seconds, then
P(spurious rxmit) is
A about 3%.
090 00 L o)
2000 4000 6000 RTT value (ms)

12/3/12

http://nms.csail.mit.edu/papers/index.php?detail=208
http://ocw.mit.edu/fairuse

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

