
 

6.02 Fall 2012 

Lecture #14 


• Spectral content via the DTFT 
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Demo: “Deconvolving” Output of
 
Channel with Echo
 

Channel, 
h

1[.] 
Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

Suppose channel is LTI with  


h1[n]=δ[n]+0.8δ[n-1] 


− jΩm 
H1(Ω) = ?? = ∑h1[m]e

m 

= 1+ 0.8e–jΩ = 1 + 0.8cos(Ω) – j0.8sin(Ω)So: 

|H

1(Ω)| = [1.64 + 1.6cos(Ω)]1/2 EVEN function of Ω;�

 <H

1(Ω) = arctan [–(0.8sin(Ω)/[1 + 0.8cos(Ω)] ODD . 
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A Frequency-Domain view of Deconvolution
 

Channel, 
H1(Ω) 

Receiver 
filter, H2(Ω) 

x[n] y[n] z[n] 

Noise w[n] 

Given H1(Ω), what should H2(Ω) be, to get z[n]=x[n]? 

H2(Ω)=1/H1(Ω) “Inverse filter” 

= (1/|H1(Ω)|). exp{–j<H1(Ω)} 

Inverse filter at receiver does very badly in the presence of noise  

that adds to y[n]: 
     filter has high gain for noise precisely at frequencies where  

channel gain|H1(Ω)| is low (and channel output is weak)! 
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DT Fourier Transform (DTFT) for 

Spectral Representation of General x[n] 


If we can write 

1 jΩn − jΩmh[n] = ∫ H (Ω)e dΩ where H (Ω) = ∑h[m]e
2π <2π> mAny contiguous 


interval of length

then we can write 2� 

1 jΩn − jΩmx[n] = ∫ X(Ω)e dΩ where X(Ω) = ∑x[m]e
2π <2π> m 

This Fourier representation expresses x[n] as  
a weighted combination of for all Ω in [–�,�].e jΩn 

X(Ωο)dΩ is the spectral content of x[n] 
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The spectrum of the exponential signal (0.5)nu[n] is shown over the 

frequency range Ω = 2πf in [-4π,4π], The angle has units of degrees. 
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 x[n] and X(ΩΩ) 
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Input/Output Behavior of 

LTI System in Frequency Domain
 

1 jΩnx[n] = ∫ X(Ω)e dΩ 
2π <2π> 

H(Ω) 

y[n] = 
1 

2π 
H (Ω)X(Ω)e jΩn 

<2π> 

∫ dΩ 

1 jΩny[n] = ∫ Y (Ω)e dΩ 
2π <2π> 

Y (Ω) = H (Ω)X(Ω) 

Compare with y[n]=(h*x)[n] 

Again, convolution in time 
has mapped to 
multiplication in frequency 
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Magnitude and Angle
 

Y (Ω) = H (Ω)X(Ω) 

|Y (Ω) |= |H (Ω) | . | X(Ω) |  
and 


<Y (Ω) = < H (Ω)+ < X(Ω) 
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Core of the Story 
1. A huge class of DT and CT signals 

can be written --- using Fourier transforms --- as a 

weighted sums of sinusoids (ranging from very slow to very fast)
 
or (equivalently, but more compactly) complex exponentials. 

The sums can be discrete ∑ or continuous ∫ (or both). 


2. LTI systems act very simply on sums of sinusoids: 

superposition of responses to each sinusoid, with the 

frequency response determining the frequency-dependent  

scaling of magnitude, shifting in phase. 
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 Loudspeaker Bandpass Frequency Response
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 Spectral Content of Various Sounds
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Connection between CT and DT
 
The continuous-time (CT) signal 

x(t) = cos( ωt) = cos(2πft) 


sampled every T seconds, i.e., at a sampling 
frequency of fs = 1/T, gives rise to the discrete-time 
(DT) signal 

x[n] = x(nT) = cos(ωnT) = cos(Ωn) 

So Ω = ωΤ� 

and Ω = π corresponds to ω = π/T or f = 1/(2T) = fs/2 
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Signal x[n] that has its frequency content 

uniformly distributed in [–ΩΩc , Ωc]
 

1 jΩnx[n] = ∫ X(Ω)e dΩ 
2π <2π> 

1 ΩC
jΩn = ∫ 1⋅ e dΩ 

2π −ΩC 

sin(ΩCn)
= , n ≠ 0 

πn 
DT “sinc” function 
(extends to ±∞ in time, �= ΩC / π , n = 0 
falls off only as 1/n) 
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 x[n] and X(ΩΩ) 


6.02 Fall 2012 Lecture 14 Slide #15 



 X(Ω) and x[n] 
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Fast Fourier Transform (FFT) to compute 

samples of the DTFT for 

signals of finite duration


P−1 (P/2)−1 
− jΩkm jΩkn

X( Ωk ) = ∑ x[m]e , x[n] = 
1 ∑ X(Ωk )eP m=0 k=−P/2 

where Ωk = k(2π/P), P is some integer (preferably a power of 2) 
such that P is longer than the time interval [0,L-1] over which 
x[n] is nonzero, and k ranges from –P/2 to (P/2)–1 (for even P). 

Computing these series involves O(P2) operations – when P gets 
large, the computations get very s l o w…. 

Happily, in 1965 Cooley and Tukey published a fast method for 
computing the Fourier transform (aka FFT, IFFT), rediscovering  
a technique known to Gauss. This method takes O(P log P) 
operations. 

P = 1024, P2 = 1,048,576, P logP ≈ 10,240
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Where do the ΩΩk live? 

e.g., for P=6 (even)
 

Ω0� Ω1� Ω2� Ω3�Ω�3� Ω�2� Ω�1� 

–� 0 �
 

exp(jΩ0)� 

exp(jΩ�1)� 

exp(jΩ2)�

 exp(jΩ3)� 
= exp(jΩ�3) 

exp(jΩ1)� 

exp(jΩ�2)� 

. 1–1 

j 

–j 
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 Spectrum of Digital Transmissions
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(scaled version of DTFT samples) 
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 Spectrum of Digital Transmissions
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Observations on previous figure
 
•	 The waveform x[n] cannot vary faster than the step change every 7 

samples, so we expect the highest frequency components in the 
waveform to have a period around 14 samples. (The is rough and 
qualitative, as x[n] is not sinusoidal.) 

•	 A period of 14 corresponds to a frequency of 2�/14 = �/7, which 
is 1/7 of the way from 0 to the positive end of the frequency axis 
at � (so k approximately 100/7 or 14 in the figure). And that 
indeed is the neighborhood of where the Fourier coefficients drop 
off significantly in magnitude.  

•	 There are also lower-frequency components corresponding to the 
fact that the 1 or 0 level may be held for several bit slots. 

• And there are higher-frequency components that result from the 

transitions between voltage levels being sudden, not gradual. 
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 Effect of Low-Pass Channel
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 How Low Can We Go?
 

7 samples/bit � 14 samples/period � k=(N/14)=(196/14)=14 
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