
    

    
   

6.02 Fall 2012 

Lecture #12 


• Bounded-input, bounded-output stability 
• Frequency response 
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Bounded-Input Bounded-Output (BIBO) 
Stability
 

What ensures that the infinite sum 
" 

y[n] = # h[m]x[n ! m] 
is well-behaved? m=!"
 

One important case: If the unit sample response is absolutely
 
"summable, i.e., 
# | h[m] | !<!" 
m=!" 

and the input is bounded, i.e., | x[k] |!! M < " 

Under these conditions, the convolution sum is well-behaved, 
and the output is guaranteed to be bounded. 

The absolute summability of h[n] is necessary and sufficient 
for this bounded-input bounded-output (BIBO) stability. 
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Time now for a Frequency-Domain Story
 

in which
 
convolution
 

is transformed to 

multiplication,
 

and other
 
good things
 

happen
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A First Step
 

Do periodic inputs to an LTI system, i.e., x[n] such that 

x[n+P] = x[n] for all n, some fixed P 

(with P usually picked to be the smallest positive integer 
for which this is true) yield periodic outputs? If so, of 
period P? 

Yes! --- use Flip/Slide/Dot.Product to see 
this easily: sliding by P gives the same picture 
back again, hence the same output value. 

Alternate argument: Since the system is TI, using 
input x delayed by P should yield y delayed by P. But 
x delayed by P is x again, so y delayed by P must be y. 
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But much more is true for 

Sinusoidal Inputs to LTI Systems
 

Sinusoidal inputs, i.e., 

x[n] = cos(Ωn + θ) 

yield sinusoidal outputs at the same ‘frequency’ Ω rads/sample. 

And observe that such inputs are not even periodic 
in general! 

Periodic if and only if 2π/Ω is rational, =P/Q for some 
integers P(>0), Q. The smallest such P is the period. 

Nevertheless, we often refer to 2π/Ω as the ‘period’ of this 
sinusoid, whether or not it is a periodic discrete-time 
sequence. This is the period of an underlying 
continuous-time signal. 

6.02 Fall 2012 Lecture 12, Slide #5 



    

 

     
     

        
  

      
      

      
    

      

Examples
 

cos(3πn/4) has frequency 3π/4 rad/sample, and 
period 8; shifting by integer multiples of 8 yields the same 
sequence back again, and no integer smaller than 
8 accomplishes this. 

cos(3n/4) has frequency ¾ rad/sample, and is not periodic as 
a DT sequence because 8π/3 is irrational, but we could 
still refer to 8π/3 as its ‘period’, because we can 
think of the sequence as arising from sampling the 
periodic continuous-time signal cos(3t/4) at integer t. 
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Sinusoidal Inputs and LTI Systems
 

h[n] 

A very important property of LTI systems or channels: 

If the input x[n] is a sinusoid of a given amplitude, 
frequency and phase, the response will be a sinusoid at the 
same frequency, although the amplitude and phase may be 
altered. The change in amplitude and phase will, in 
general, depend on the frequency of the input. 

Let’s prove this to be true … but use complex exponentials 

instead, for clean derivations that take care of sines and  

cosines (or sinusoids of arbitrary phase) simultaneously.
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A related simple case:

 real discrete-time (DT) exponential 


inputs also produce exponential outputs
 
of the same type
 

• Suppose x[n] = rn for some real number r 

" 

• y[n] = # h[m]x[n ! m] 
m=!" 

= #
" 

h[m]rn!m 

m=!" 

$ '
 
= & #

" 

h[m]r!m )rn
 

%m=!" (


• i.e., just a scaled version of the exponential input 
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Complex Exponentials
 

A complex exponential is a complex-valued function of a 
single argument – an angle measured in radians. Euler’s 
formula shows the relation between complex exponentials 
and our usual trig functions: 

e j! = cos(! ) + j sin(! ) 
1 1 1 1 e! j!e j! !cos(! ) = 
2 
e j! + 

2 
e! j! sin(! ) =
 

2 j 2 j
 

In the complex plane, e j! = cos(! ) + j sin(! ) is a 
point on the unit circle, at an angle of ϕ with respect 
to the positive real axis. cos and sin are projections on 
real and imaginary axes, respectively. 

Increasing ϕ by 2π brings you back to the same point! 
e j!So any function of only needs to be studied for ϕ in [-π, π] . 
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Useful Properties of ejφ
 

When φ = 0: 

e j 0 =1 

When φ = ±π: 

e j! = e! j! = !1 

e j!n = e! j!n = (!1)n 

(More properties later) 
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Frequency Response
 

y[n] h[.]A(cosΩn + jsinΩn)=AejΩn 

Using the convolution sum we can compute the system’s 
response to a complex exponential (of frequency Ω) as input: 

y[n] = "h[m]x[n ! m] 
m 

= "h[m]Ae j#(n!m) 
m 

$ ' 
= &"h[m]e! j#m ) Ae j#n 

(% m 

= H (#) * x[n] 
where we’ve defined the frequency response of the system as 

H (!) "$h[m]e# j!m 

m 
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Back to Sinusoidal Inputs 

Invoking the result for complex exponential inputs, it is 
easy to deduce what an LTI system does to sinusoidal inputs: 

|H(Ω0)|cos(Ω0n + <H(Ω0))cos(Ω0n) H(Ω) 

This is IMPORTANT 
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From Complex Exponentials to
 
Sinusoids
 

cos(Ωn)=(ejΩn+e-jΩn))/2 


So response to this cosine 
input is 

(H(Ω)ejΩn+H(-Ω)e-jΩn))/2 = Real part of H(Ω)ejΩn 

= Real part of |H(Ω)|ej(Ωn+<H(Ω)) 

cos(Ω0n) |H(Ω0)|cos(Ω0n + <H(Ω0))H(Ω) 
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Sometimes 
written Example h[n] and H(Ω) 
as H(ejΩn) 
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Frequency Response of “Moving Average”
 
Filters
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