
 
 

6.02 Fall 2012

Lecture #11

• Eye diagrams
• Alternative ways to look at convolution

6.02 Fall 2012 Lecture 11, Slide #1

rsha10
Rectangle

rsha10
Rectangle

rsha10
Rectangle

rsha10
Rectangle

Eye Diagrams

000 100 010 110 001 101 011 111

These are overlaidEye diagrams make it easy to find
two-bit-slot segmentsthe worst-case signaling conditions
of step responses, plottedat the receiving end.
without the ‘stems’ of
the stem plot on the left6.02 Fall 2012 Lecture 11, Slide #2

 “Width” of Eye

Worst-case “1”

Worst-case “0” “width” of eye
(as in “eye wide open”)

To maximize noise margins:
Pick the best sample point � widest point in the eye

 Pick the best digitization threshold � half-way across width

6.02 Fall 2012 Lecture 11, Slide #3

Choosing Samples/Bit

Oops, no eye!ye!

Given h[n], you can use the eye diagram to pick the
number of samples transmitted for each bit (N):

Reduce N until you reach the noise margin you feel
is the minimum acceptable value.

6.02 Fall 2012 Lecture 11, Slide #4

 Example: “ringing” channel

6.02 Fall 2012
 Lecture 11, Slide #5

 

 

Constructing the Eye Diagram

(no need to wade through all this unless you

really want to!)

1. Generate an input bit sequence pattern that contains all possible
combinations of B bits (e.g., B=3 or 4), so a sequence of 2BB bits.
(Otherwise, a random sequence of comparable length is fine.)

2. Transmit the corresponding x[n] over the channel (2BBN samples, if
there are N samples/bit)

3. Instead of one long plot of y[n], plot the response as an eye diagram:

a.	 break the plot up into short segments, each containing

KN samples, starting at sample 0, KN, 2KN, 3KN, … (e.g., K=2 or
3)

b. plot all the short segments on top of each other

6.02 Fall 2012 Lecture 11, Slide #6

 Back To Convolution

From last lecture: If system S is both linear and time-invariant
(LTI), then we can use the unit sample response h[n] to predict
the response to any input waveform x[n]:

Sum of shifted, scaled unit sample
Sum of shifted, scaled unit sample functions responses, with the same scale factors

∞

S
∞

x[n] = ∑ x[k]δ[n − k] y[n] = ∑ x[k]h[n − k]
k=−∞ k=−∞

CONVOLUTION SUM

Indeed, the unit sample response h[n] completely characterizes

the LTI system S, so you often see

h[.]x[n] y[n]

6.02 Fall 2012 Lecture 11, Slide #7

�

Sx[n]

Unit Sample Response of a

Scale-&-Delay System

y[n]=Ax[n-D]

If S is a system that scales the input by A and delays it by D
time steps (negative ‘delay’ D = advance), is the system

time-invariant? Yes!

linear? Yes!

Unit sample response is h[n]=Aδ[n-D]

General unit sample response

h[n]=… + h[-1] δ[n+1] + h[0]δ[n] + h[1]δ[n�1]+… �

for an LTI system can be thought of as resulting from
6.02 Fall 2012 many scale-&-delays in parallel Lecture 11, Slide #8

 A Complementary View of Convolution
So instead of the picture:

∞ ∞

x[n] = ∑ x[k]δ[n − k] y[n] = ∑ x[k]h[n − k]
k=−∞ k=−∞

we can consider the picture:

h[.]

h[.]=…+h[-1]δ[n+1]+h[0]δ[n]+h[1]δ[n-1]+…x[n] y[n]

∞

from which we get y[n] = ∑ h[m]x[n − m]

m=−∞

(To those who have an eye for these things, my apologies
6.02 Fall 2012 for the varied math font --- too hard to keep uniform!) Lecture 11, Slide #9

(side by side)

y[n] =

∞ ∞

(x ∗ h)[n] = ∑ x[k]h[n − k] = ∑ h[m]x[n − m] = (h ∗ x)[n]

k=−∞ m=−∞

Input term x[0] at Unit sample response
time 0 launches term h[0] at time 0
scaled unit sample contributes scaled input
response x[0]h[n] at h[0]x[n] to output
output

Input term x[k] at Unit sample response
time k launches term h[m] at time m
scaled shifted unit contributes scaled shifted
sample response input h[m]x[n-m]
x[k]h[n-k] at output to output

6.02 Fall 2012 Lecture 11, Slide #10

To Convolve (but not to “Convolute”!)

∞ ∞

∑ x[k]h[n − k] = ∑ h[m]x[n − m]
k=−∞ m=−∞

A simple graphical implementation:

Plot x[.] and h[.] as a function of the dummy index

(k or m above)

Flip (i.e., reverse) one signal in time,

slide it right by n (slide left if n is –ve), take the

dot.product with the other.

This yields the value of the convolution at

the single time n.

‘flip one & slide by n …. dot.product with the other’

6.02 Fall 2012 Lecture 11, Slide #11

 

 
 

 

Example

•	 From the unit sample response h[n] to the unit step response

s[n] = (h *u)[n]

•	 Flip u[k] to get u[-k]
•	 Slide u[-k] n steps to right (i.e., delay u[-k]) to get u[n-k]),

place over h[k]
•	 Dot product of h[k] and u[n-k] wrt k:

n

s[n] = ∑ h[k]
k=−∞

6.02 Fall 2012 Lecture 11, Slide #12

 

 

Channels as LTI Systems

Many transmission channels can be effectively modeled as
LTI systems. When modeling transmissions, there are few
simplifications we can make:

•	 We’ll call the time transmissions start t=0; the signal before
the start is 0. So x[m] = 0 for m < 0.

•	 Real-word channels are causal: the output at any time
depends on values of the input at only the present and
past times. So h[m] = 0 for m < 0.

These two observations allow us to rework the convolution
sum when it’s used to describe transmission channels:

∞	 ∞ n n

y[n] = ∑ x[k]h[n − k] = ∑x[k]h[n − k ∑] = x[k]h[n − k] = ∑x[n − j]h[j]

k=−∞ k=0	 k=0 j=0

6.02 Fall 2012 start at t=0 causal 	 j=n-k Lecture 11, Slide #13

Properties of Convolution

∞ ∞

(x ∗ h)[n] ≡ ∑ x[k]h[n − k] = ∑ h[m]x[n − m]
k=−∞ m=−∞

The second equality above establishes that convolution is
commutative:

x ∗ h = h ∗ x

Convolution is associative:

x ∗ (h1 ∗ h2) = (x ∗ h1)∗ h2

Convolution is distributive:

x ∗(h1 + h2) = (x ∗ h1) + (x ∗ h2)

6.02 Fall 2012 Lecture 11, Slide #14

 Series Interconnection of LTI Systems

x[n] h1[.] h2[.]
w[n]

y[n]

y = h2 ∗ w = h2 ∗(h1 ∗ x) = (h2 ∗ h1)∗ x

(h2 *h1)[.]x[n] y[n]

(h1 *h2)[.]x[n] y[n]

h2[.]x[n] h1[.] y[n]

6.02 Fall 2012 Lecture 11, Slide #15

“Deconvolving” Output of

Echo Channel

Channel,
h1[.]

Receiver
filter, h2[.]

x[n] y[n] z[n]

Suppose channel is LTI with

h 1[n]=δ[n]+0.8δ[n-1]

Find h2[n] such that z[n]=x[n]

(h2*h1)[n]=δ[n]

Good exercise in applying
Flip/Slide/Dot.Product

6.02 Fall 2012 Lecture 11, Slide #16

“Deconvolving” Output of

Channel with Echo

Channel,
h1[.]

Receiver
filter, h2[.]

x[n] y[n]
+

z[n]+v[n]

w[n]

Even if channel was well modeled as LTI and h1[n]
was known, noise on the channel can greatly degrade
the result, so this is usually not practical.

6.02 Fall 2012 Lecture 11, Slide #17

 Parallel Interconnection of LTI Systems

h1[.]

x[n]

y1[n]

h2[.]

+

y2[n]

y[n]

y = y1 + y2 = (h1 ∗ x) + (h2 ∗ x) = (h1 + h2)∗ x

(h1+h2)[.]x[n] y[n]

6.02 Fall 2012 Lecture 11, Slide #18

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

