
 
 

6.02 Fall 2012 

Lecture #11 


• Eye diagrams 
• Alternative ways to look at convolution 
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Eye Diagrams
 

000 100 010 110 001 101 011 111 

These are overlaidEye diagrams make it easy to find 
two-bit-slot segmentsthe worst-case signaling conditions  
of step responses, plottedat the receiving end. 
without the ‘stems’ of  
the stem plot on the left6.02 Fall 2012 Lecture 11, Slide #2 



 “Width” of Eye
 
Worst-case “1” 

Worst-case “0” “width” of eye 
(as in “eye wide open”) 

To maximize noise margins: 
Pick the best sample point � widest point in the eye 

  Pick the best digitization threshold � half-way across width 
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Choosing Samples/Bit
 

Oops, no eye!ye! 

Given h[n], you can use the eye diagram to pick the 
number of samples transmitted for each bit (N): 

Reduce N until you reach the noise margin you feel 
is the minimum acceptable value. 
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 Example: “ringing” channel
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Constructing the Eye Diagram
 
(no need to wade through all this unless you 


really want to!)
 

1. Generate an input bit sequence pattern that contains all possible 
combinations of B bits (e.g., B=3 or 4), so a sequence of 2BB bits. 
(Otherwise, a random sequence of comparable length is fine.) 

2. Transmit the corresponding x[n] over the channel (2BBN samples, if 
there are N samples/bit) 

3. Instead of one long plot of y[n], plot the response as an eye diagram: 

a.	 break the plot up into short segments, each containing 

KN samples, starting at sample 0, KN, 2KN, 3KN, … (e.g., K=2 or 
3) 

b. plot all the short segments on top of each other 
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  Back To Convolution
 
From last lecture: If system S is both linear and time-invariant 
(LTI), then we can use the unit sample response h[n] to predict 
the response to any input waveform x[n]: 

Sum of shifted, scaled unit sample 
Sum of shifted, scaled unit sample functions responses, with the same scale factors 

∞ 

S 
∞ 

x[n] = ∑ x[k]δ[n − k] y[n] = ∑ x[k]h[n − k] 
k=−∞ k=−∞ 

CONVOLUTION SUM 

Indeed, the unit sample response h[n] completely characterizes 

the LTI system S, so you often see 


h[.]x[n] y[n] 
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Sx[n] 

Unit Sample Response of a 

Scale-&-Delay System
 

y[n]=Ax[n-D] 

If S is a system that scales the input by A and delays it by D 
time steps (negative ‘delay’ D = advance), is the system 

time-invariant?  Yes! 

linear?  Yes! 

Unit sample response is h[n]=Aδ[n-D] 

General unit sample response 

h[n]=… + h[-1] δ[n+1] + h[0]δ[n] + h[1]δ[n�1]+… � 

for an LTI system can be thought of as resulting from  
6.02 Fall 2012 many scale-&-delays in parallel Lecture 11, Slide #8 



 A Complementary View of Convolution 
So instead of the picture: 

∞ ∞ 

x[n] = ∑ x[k]δ[n − k] y[n] = ∑ x[k]h[n − k] 
k=−∞ k=−∞ 

we can consider the picture: 

h[.] 

h[.]=…+h[-1]δ[n+1]+h[0]δ[n]+h[1]δ[n-1]+…x[n] y[n] 

∞ 

from which we get  y[n] = ∑ h[m]x[n − m]
 
m=−∞ 

(To those who have an eye for these things, my apologies  
6.02 Fall 2012 for the varied math font --- too hard to keep uniform!) Lecture 11, Slide #9 



 

 
 
 

(side by side)
 
y[n] = 

∞ ∞ 

(x ∗ h)[n] = ∑ x[k]h[n − k] = ∑ h[m]x[n − m] = (h ∗ x)[n ]
 
k=−∞ m=−∞ 

Input term x[0] at Unit sample response 
time 0 launches term h[0] at time 0  
scaled unit sample contributes scaled input 
response x[0]h[n] at  h[0]x[n] to output 
output 

Input term x[k] at Unit sample response  
time k launches term h[m] at time m  
scaled shifted unit contributes scaled shifted 
sample response  input h[m]x[n-m] 
x[k]h[n-k] at output to output 
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To Convolve (but not to “Convolute”!)
 
∞ ∞ 

∑ x[k]h[n − k] = ∑ h[m]x[n − m] 
k=−∞ m=−∞ 

A simple graphical implementation: 


Plot x[.] and h[.] as a function of the dummy index 

(k or m above) 


Flip (i.e., reverse) one signal in time,  

slide it right by n (slide left if n is –ve), take the 

dot.product with the other.
 

This yields the value of the convolution at 

the single time n. 

‘flip one & slide by n …. dot.product with the other’ 
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Example
 
•	 From the unit sample response h[n] to the unit step response 


s[n] = (h *u)[n] 

•	 Flip u[k] to get u[-k] 
•	 Slide u[-k] n steps to right (i.e., delay u[-k]) to get u[n-k]), 

place over h[k] 
•	 Dot product of h[k] and u[n-k] wrt k: 

n 

s[n] = ∑ h[k] 
k=−∞ 
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Channels as LTI Systems
 

Many transmission channels can be effectively modeled as 
LTI systems.  When modeling transmissions, there are few 
simplifications we can make: 

•	 We’ll call the time transmissions start t=0; the signal before 
the start is 0. So x[m] = 0 for m < 0. 

•	 Real-word channels are causal: the output at any time 
depends on values of the input at only the present and 
past times. So h[m] = 0 for m < 0. 

These two observations allow us to rework the convolution 
sum when it’s used to describe transmission channels: 

∞	 ∞ n n 

y[n] = ∑ x[k]h[n − k] = ∑x[k]h[n − k ∑] = x[k]h[n − k] = ∑x[n − j]h[ j]
 
k=−∞ k=0	 k=0 j=0 
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Properties of Convolution
 
∞ ∞ 

(x ∗ h)[n] ≡ ∑ x[k]h[n − k] = ∑ h[m]x[n − m] 
k=−∞ m=−∞ 

The second equality above establishes that convolution is 
commutative: 

x ∗ h = h ∗ x 

Convolution is associative: 

x ∗ (h1 ∗ h2 ) = (x ∗ h1 )∗ h2 

Convolution is distributive: 

x ∗(h1 + h2 ) = (x ∗ h1) + (x ∗ h2 ) 
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 Series Interconnection of LTI Systems
 

x[n] h1[.] h2[.] 
w[n] 

y[n] 

y = h2 ∗ w = h2 ∗(h1 ∗ x) = (h2 ∗ h1 )∗ x
 

(h2 *h1)[.]x[n] y[n] 

(h1 *h2)[.]x[n] y[n] 

h2[.]x[n] h1[.] y[n] 
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“Deconvolving” Output of
 
Echo Channel
 

Channel, 
h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] z[n] 

Suppose channel is LTI with  

h 1[n]=δ[n]+0.8δ[n-1] 

Find h2[n] such that z[n]=x[n] 


(h2*h1)[n]=δ[n] 


Good exercise in applying  
Flip/Slide/Dot.Product 
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“Deconvolving” Output of
 
Channel with Echo
 

Channel, 
h1[.] 

Receiver 
filter,  h2[.] 

x[n] y[n] 
+ 

z[n]+v[n] 

w[n] 

Even if channel was well modeled as LTI and h1[n] 
was known, noise on the channel can greatly degrade 
the result, so this is usually not practical.  
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 Parallel Interconnection of LTI Systems
 

h1[.] 

x[n] 

y1[n] 

h2[.] 

+ 

y2[n] 

y[n] 

y = y1 + y2 = (h1 ∗ x) + (h2 ∗ x) = (h1 + h2 )∗ x
 

(h1+h2)[.]x[n] y[n] 
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