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* A small postscript on multiple random variables
 Introduction to modulation and demodulation

* Input/output descriptions of systems

* Linear time-invariant (LTI) models



Dealing with Multiple Random Variables

e PDF of a random variable X:

fx(x) 20 and ffX(x) dx = 1

(this integral is over the entire real line)

e The natural extension to the case of two random
variables X and Y is the joint PDF of X and Y:

fxyy) 20 and ”fX,Y(x)y) dxdy =1

(2D-integral covers the entire x,y plane)
* Expected value of a function of X,Y:

Elg(x,v)] = g(xy) fxv(6y) dx dy

 And similarly for more random variables



In our Signal Detection Setting

* Last lecture we discussed averaging multiple random
variables: A = (w/[I1] + w{2] +.. + w[M]) / M

and wanted the mean and variance of A.

Here each w/n/ was the additive noise component of a
received sample in a fixed bit slot, and assumed to be a
zero-mean Gaussian of variance o2, independent of all
other w/.] . These w/.] constitute “additive white
Gaussian noise” (AWGN) --- “white” here=zero-mean iid

» Strictly speaking, we should have been working with
the joint PDF of the M random variables, in an M-
dimensional space. However, the following facts suffice
to get us through with just 1D PDFs:



Two Important Facts

We write these for two random variables X and Y, but the results
extend to M random variables. Also, g(.) and h(.) below are
arbitrary functions.

1. Expectation is always additive, i.e.,
Elg(x,Y) + hX,Y)] = E[g(X,Y)[+ E[R(X,Y)]
- Follows from the fact that integration is additive; needs no
assumptions (apart from existence of the expected value)
- In particular, E/g(X) + h(Y)] = E[g(X)]+ E[h(Y)]
The RHS only needs 1D PDFs, not joint PDFs!

2. For INDEPENDENT random variables, expectation is
always multiplicative. In fact, X and Y are independent if and
only if E[gX)n(y)] = E[g(X)].E[n(Y)]

for all choices of functions g(.) and h{(.).

Again, the RHS needs only 1D PDFs, not joint PDFs!



A Single Link
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A Single Link

codeword &  clocked, discrete-time | >
bits in
generate
1001110101 — digitized [~—> modulate DAC}
symbols
¢  continuous-time | >

( NOISY & DISTORTING ANALOG CHANNEL )<—

( demodulate sample &
ADC g & filter threshold 1001110101
codeword
¢  clocked, discrete-time | > bits out

DAC: Digital-to-analog converter
ADC: Analog-to-digital converter



A Single Link
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From Baseband to Modulated Signal, and
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Image by MIT OpenCourseWare.
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Modulation (at the Transmitter)

Adapts the digitized signal x[n] to the characteristics of
the channel.

e.g., Acoustic channel from laptop speaker to microphone is
not well suited to transmitting constantlevels V, andV, to
represent O and 1. So instead transmit sinusoidal
pressure-wave signals proportional to speaker voltages

V,Co8(2f.t) and v, cos(2mf.t)

where fc is the carrier frequency (e.g., 2kHz; wavelength
at 340 m/s = 17cm, comparable with speaker dimensions) and

vy =0 v =V>0 (on-off or
amplitude keying)
or alternatively
vo=—V v, =V>0 (bipolar or
phase-shift keying)
Could also key the frequency.



From Brant Rock tower, radio age was sparked
By Carolyn Y. Johnson, Globe Staff | July 30, 2006

MARSHFIELD, MA -- A century ago, radio pioneer
Reginald A. Fessenden used a massive 420-foot radio
tower that dwarfed Brant Rock to send voice and music to
ships along the Atlantic coast, in what has become known
as the world's first voice radio broadcast. This week,
Marshfield will lay claim to its little-known radio heritage
with a three-day extravaganza to celebrate the feat --
including pilgrimages to the base of the long-dismantled
tower, a cocktail to be named the Fessenden Fizz, and a
dramatic reenactment of the historic moment, called
“"Miracle at Brant Rock.”

Amplitude Modulation (AM)



Modulation
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Ildeas for Demodulation

* For on-off keying, it suffices to detect when there’s
signal and when there isn’t, since we’re only trying
to distinguish v, =0 v, =V>0

Many ways to do that, e.g., take absolute value and
then local average over half-period of carrier

* For bipolar keying, we need the sign:

vo=—V v, =V>0



Assuming no Demodulation

distortion or
noise on

channel, so/ t[n] z|n]

what was
transmitted
is received cos(2.n)

z[n] =t[n]cos(L2 n)
z[n] = x[n]cos(€2, n)cos(€2 n)

z[n] =0.5x[n](1+ cos(2€2 n))

z[n]=0.5x[n]+ 0.5x[n]cos(2L2 n)



Demodulation
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Averaging filter

codeword
bits in
generate
1001110101 = digitized > modulate —> DAC
symbols
x[n] t[n]
Ve QC =23T,/ 16
S NOISY & DISTORTING ANALOG CHANNEL ><—
t[n] z[n] 16 samples per cycle

r[n]
ADC | demodulate —>»| filter —>

r[n] = z[n]+...+z[n-L], L+1 length of the averaging filter
For L+1=8, 2Q_ component is at 2x/8, which is 8 samples per cycle

So, the 2Q_ component gets averaged out

*At transitions, there is a bit of degradation, but we make decisions on
the middle samples



Filtering: Removing the 2Q_ component
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Modeling Channel Behavior
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Transmission over a Channel

Signal x[n] from digitized symbols at transmitter
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Distorted noise-free signal y[n] at receiver
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System Input and Output

input response

AVAN VA%

X[n— § ——>yln]

A discrete-time signal such as x|n| or y[n] is described by
an infinite sequence of values, i.e., the time index n takes
values in —o to +w. The above picture is a snapshot at a
particular time n.

In the diagram above, the sequence of output values y[.| is
the response of system S to the input sequence x|.]

Question: Why didn’t I write:

“In the diagram above, the sequence of output values y[n] is
the response of system S to the input sequence x[n]” ??



Notation, Notation!

--We want to be clear, but being overly explicit about things leads
to a lot of notational clutter. So we take shortcuts and liberties,
“abusing” and “overloading” the notation, in the hope that context
and other factors will make our meaning clear.

--But poor notation can also impede, mislead, confuse! So one has
draw the line carefully.

Example: our hard-working discrete-time index n
(in continuous-time, it’s t). Specifically, x[n] can denote

(a) the value of the signal x at a particular time n

(b) the sequence of values for n in —wo to +w, i.e., the

entire signal x.

For (b), it’s often clearer to write x[.| or just x --- particularly if
there are multiple signals involved, because the same “dummy
index” n shouldn’t be used for both.

On the other hand, if you want to use x[n] for a specific value of
time, it’s sometimes clearer to write x[n,]



Unit Step

A simple but useful discrete-time signal is the unit step
signal or function, u[n], defined as

-

0, n<0

uln]=-
! I, n=0
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Unit Sample

Another simple but useful discrete-time signal is the unit
sample signal or function, 98[n], defined as

0, n=0
I, n=0
d[n] oln+5]
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Unit Sample

Another simple but useful discrete-time signal is the unit
sample signal or function, 0[n|, defined as

oln]=uln]-uln-1]=-

1.0
0.8
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0.4
0.2

0.0

0,
1,

n=(

n

0

101
0:g e

0.4

0.2 f-msessmsin

0.0

Note that standard algebraic operations on signals
(e.g. subtraction, addition, scaling by a constant)
are defined in the obvious way, instant by instant.




Unit Sample and Unit Step Responses

Unit sample Unit sample response

VAN vV
6[1’1]—) S —>h[1’1]

The unit sample response of a system S is the response of
the system to the unit sample input. We will always
denote the unit sample response as hin].

Similarly, the unit step response s|n]:

Unit step Unit step response

AVAN VA%

unj— g - sin]




L I— Unit Sample
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A discrete-time signal can be decomposed

into a sum of time-shifted, scaled unit

T P T T samples.
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Unit Step
Decomposition

Digital signaling waveforms are
easily decomposed into time-
shifted, scaled unit steps (each
transition corresponds to another
shifted, scaled unit step).

In this example, x[n] is the
transmission of 1001110 using 4
samples/bit:

x[n]l=uln]l-uln-41+u[n-12]1-u[n-24]



Time Invariant Systems

Let y[n| be the response of S to input x[n]|.

If for all possible sequences x[n] and integers N

X[H—N] —>

S

— y[n-Nj

then system S is said to be time invariant (TI). A time
shift in the input sequence to S results in an identical
time shift of the output sequence.

In particular, for a TI system, a shifted unit sample
function O[n— N ]at the input generates an identically
shifted unit sample response A[n— N] at the output.



Linear Systems

Let y,[n]| be the response of S to an arbitrary input x,[n]
and y,[n] be the response to an arbitrary x,[n].

If, for arbitrary scalar coefficients a and b, we have:

ax,[n]+bx,[n]— S r— ay[n]+by,[n]

then system S is said to be linear. If the input is the
weighted sum of several signals, the response is the

superposition (i.e., weighted sum) of the response to

those signals.

One key consequence: If the input is identically O for a
linear system, the output must also be identically O.



Our focus will be on LTI Models

LTI = Linear and Time Invariant

Good description of time-invariant systems for
small deviations from a nominal operating
equilibrium

Lots of structure, detailed analysis possible,
amenable to development of good computational
tools, ...

Major arena for engineering design



MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http:http://ocw.mit.edu

