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6.02 Fall 2012 
Lecture #7 

•  Viterbi decoding of convolutional codes 
         Path and branch metrics 

  Hard-decision & soft-decision decoding 
•  Performance issues: decoder complexity, post-
decoding BER, “free distance” concept 
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 Convolutional Codes

•  Coding review 
•  Decoding via Viterbi algorithm 
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Key Concept for Coding and Decoding:  
T  rellis

•  Example: K=3, rate-½ convolutional code 
–  g0 = 111: p0[n] = 1*x[n] + 1*x[n-1] + 1*x[n-2] 

–  g1 = 101: p1[n] = 1*x[n] + 0*x[n-1] + 1*x[n-2] 

•  States labeled with x[n-1] x[n-2] 
•  Arcs labeled with x[n]/p0p1 
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Trellis View at Transmitter 
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Decoding:  
Finding the Maximum-Likelihood (ML) Path 

Given the received voltages, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the 
trellis that minimizes the “distance” between the received parity 
voltages and the voltages the transmitter would have sent had it 
followed that state sequence. 

One solution: Viterbi decoding 
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 Receiver

•  For the code 
p0 = x[n]+x[n-1]+x[n-2] 
p1 = x[n]           +x[n-2] 

•  Received: 
000101100110 

•  Some errors have 
occurred…  

•  What’s the 4-bit  
message? 

: 0111 Most likely: 0111 

•  ssage whosei.e., message whose  
codewordrd is closest is closest  
to rcvd bits 

 

Msg Codeword Received Hamming 
distance 

0000 000000000000 5 
0001 000000111011 - 
0010 000011101100 - 
0011 000011010111 - 
0100 001110110000 - 
0101 001110001011 - 
0110 001101011100 - 
0111 001101100111 000101100110 000101100110 2 2 
1000 1000 111011000000 111011000000 - 
1001 1001 111011111011 111011111011 - 
1010 1010 111000101100 111000101100 - 
1011 1011 111000010111 111000010111 - 
1100 1100 110101110000 110101110000 - 
1101 1101 110101001011 110101001011 - 
1110 110110011100 - 
1111 110110100111 - 

Initial and final state: 00 
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Vi  terbi Algorithm
•  Want: Most likely message sequence 

•  Have: (possibly corrupted) received parity sequences 
•  Viterbi algorithm for a given K and r: 

–  Works incrementally to compute most likely message sequence 

–  Uses two metrics 

•  Branch metric: BM(xmit,rcvd) proportional to negative log 
likelihood, i.e. negative log probability that we receive rcvd, 
given that xmit was sent.  
–  Hard decision : use digitized bits, compute Hamming distance 

between xmit and rcvd.  Smaller distance is more likely if BER < 
1/2 

–  Soft decision : use function of received voltages directly 

•  Path metric: PM[s,i] for each state s of the 2K-1 transmitter 
states and bit time i , where 0 ≤ i < L = len(message). 
–  PM[s,i] = smallest sum of BM(xmit, rcvd) over all message 

sequences m that place transmitter in state s at time i  
–  PM[s,i+1] computed from PM[s,i] and p0[i],…,pr-1[i] 
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Hard Decisions 

•  As we receive each bit it s immediately digitized to 
0  or 1  by comparing it against a threshold 

voltage 
–  We lose the information about how good  the bit is: 

a 1  at .9999V is treated the same as a 1  at .5001V 

•  The branch metric used in the Viterbi decoder 
under hard-decision decoding is the Hamming 
distance between the digitized received voltages 
and the expected parity bits 

•  Throwing away information is (almost) never a good 
idea when making decisions 
–  Can we come up with a better branch metric that uses 

more information about the received voltages? 
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 Soft-Decision Decoding
•  In practice, the receiver gets a voltage level, V, for each 

received parity bit 
–  Sender sends V0 or V1 volts; V in (-∞,∞) assuming additive Gaussian 

noise 

•  Idea: Pass received voltages to decoder before digitizing 

•  Define a soft  branch metric as the square of the Euclidian 
distance between received voltages and expected voltages 
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•  Soft-decision decoder chooses path that minimizes sum of the 
squares of the Euclidean distances between received and 
expected voltages 
–  Different BM & PM values, but otherwise the same algorithm 
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Viterbi  Algorithm with Hard Decisions
•  Branch metrics measure the contribution to negative log 

likelihood by comparing received parity bits to possible 
transmitted parity bits computed from possible messages. 
 

•  Path metric PM[s,i] proportional to negative log likelihood of 
transmitter being in state s at time i, assuming the mostly 
likely message of length i that leaves the transmitter in state 
s. 
 

•  Most likely message?  The one that produces the smallest PM
[s,N]. 
 

•  At any given time there are 2K-1 most-likely messages we re 
tracking  time complexity of algorithm grows exponentially 
with constraint length K, but only linearly with message 
length (as opposed to exponentially in message length for 
simple-minded enumeration). 
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Hard-decision Bra  nch Metric
•  BM = Hamming distance 

between expected parity bits and 
received parity bits 

•  Compute BM for each transition 
arc in trellis 

–  Example: received parity = 00 

–  BM(00,00) = 0 
BM(01,00) = 1 
BM(10,00) = 1 
BM(11,00) = 2 

•  Will be used in computing 
PM[s,i+1] from PM[s,i]. 
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Computing P  M[s,i+1]
Starting point: we’ve computed  
PM[s,i], shown graphically as label i
trellis box for each state at time i. 

 
Example: PM[00,i] = 1 means there 
was 1 bit error detected when 
comparing received parity bits to 
what would have been transmitted 
when sending the most likely 
message, considering all messages 
that place the transmitter in state 0
at time i. 

 

Q: What’s the most likely state s for 
the transmitter at time i? 

A: state 00 (smallest PM[s,i]) 
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Computing PM[s,i+1] cont  d.
Q: If the transmitter is in state s at 
time i+1, what state(s) could it have 
been in at time i? 

 
A: For each state s, there are two 
predecessor states α and β in the 
trellis diagram 
 
Example: for state 01, α=10 and =11. 
 

Any message sequence that leaves 
the transmitter in state s at time i+1 
must have left the transmitter in 
state α or state β at time i. 
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Computing PM[s,i+1] cont  d.
Example cont d: to arrive in state 01 
at time i+1, either 

1) The transmitter was in state 10 at 
time i and the ith message bit was a 
0.  If that s the case, the transmitter 
sent 10 as the parity bits and there 
was 1 bit error since we received 00.  
Total bit errors = PM[10,i] + 1 = 4   
OR 

2) The transmitter was in state 11 at 
time i and the ith message bit was a 
0.  If that s the case, the transmitter 
sent 01 as the parity bits and there 
was 1 bit error since we received 00. 
Total bit errors = PM[11,i] + 1 = 3 

Which is more likely? 
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Computing PM[s,i+1] cont  d.
Formalizing the computation: 

 
PM[s,i+1] = min(PM[α,i] + BM[α s], 
                         PM[β,i] + BM[β s]) 

 

Example: 

PM[01,i+1] = min(PM[10,i] + 1, 

                           PM[11,i] + 1) 
                  = min(3+1,2+1) = 3 

Notes: 

1)  Remember which arc was min; saved 
arcs will form a path through trellis 

2)  If both arcs have same sum, break 
tie arbitrarily (e.g., when computing 
PM[11,i+1]) 
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Hard-Decision V  iterbi Decoding
A walk through the trellis 

•  Path metric: number of errors on maximum-likelihood path 
to given state (min of all paths leading to state) 

•  Branch metric: for each arrow, the Hamming distance 
between received parity and expected parity 

0 

∞ 

∞ 

∞ 

00 

01 

10 

11 

00 
11 

11 

00 

01 
10 

01 
10 

00 
11 

11 

00 

01 
10 

01 
10 

00 
11 

11 

00 

01 
10 

01 
10 

00 
11 

11 

00 

01 
10 

01 
10 

00 
11 

11 

00 

01 
10 

01 
10 

00 
11 

11 

00 

01 
10 

01 
10 

00 Rcvd: 01 01 10 01 10 



6.02 Fall 2012 Lecture 7, Slide #17 

Post-decoding BER v.   or BSC error prob.

All codes except (7,4) Hamming code 
are rate-1/2 (so don’t assume it’s bad; 
it actually is better than (8,4) rect parity 
and one of the conv. codes 
 
Bottom 2 curves: “good” conv codes 
Pink curve: “bad” conv code 
What makes a code “good”? 
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Soft Decoding Beats Hard Decoding 

2 dB improvement 
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Spot Quiz Ti  me…

1.  What are the path metrics for the empty boxes 
(top to bottom order)? 

2.  What is the most-likely state after time step 6? 

3.  If the decoder had stopped after time step 2 and 
returned the most-likely message, what would the 
bits of the message be (careful about order!)? 
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