
6.02 Fall 2012 Lecture 7, Slide #1

6.02 Fall 2012
Lecture #7

•  Viterbi decoding of convolutional codes
 Path and branch metrics

 Hard-decision & soft-decision decoding
•  Performance issues: decoder complexity, post-
decoding BER, “free distance” concept

6.02 Fall 2012 Lecture 7, Slide #2

 Convolutional Codes

•  Coding review
•  Decoding via Viterbi algorithm

6.02 Fall 2012 Lecture 7, Slide #3

Key Concept for Coding and Decoding:
T rellis

•  Example: K=3, rate-½ convolutional code
–  g0 = 111: p0[n] = 1*x[n] + 1*x[n-1] + 1*x[n-2]

–  g1 = 101: p1[n] = 1*x[n] + 0*x[n-1] + 1*x[n-2]

•  States labeled with x[n-1] x[n-2]
•  Arcs labeled with x[n]/p0p1

00 10

01 11

0/00

1/11

1/10
0/01

0/11 1/00
0/10 1/01

STARTING STATE S

0/0110/011

1/00
0/10

2K-1
states

00

01

10

11

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

 time x[n-1]x[n-2]

6.02 Fall 2012 Lecture 7, Slide #4

Trellis View at Transmitter

00

01

10

11

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

x[n-1]x[n-2]

x[n] 0 1 1 1 0 0

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

Codeword 00 11 01 10 01 11

1/00 1

 1/01 1/0111/
0/0/10 0/1

0/00
1/11 1/11

0/110/0/11 0

1/1/00 1/0

1/01 11/ 11/011
0/10 0/0/100/100/

time

6.02 Fall 2012 Lecture 7, Slide #5

Decoding:
Finding the Maximum-Likelihood (ML) Path

Given the received voltages, the receiver must find the most-
likely sequence of transmitter states, i.e., the path through the
trellis that minimizes the “distance” between the received parity
voltages and the voltages the transmitter would have sent had it
followed that state sequence.

One solution: Viterbi decoding

00

01

10

11

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

Rcvd: 0.1,0.1 0.4,1.2 0.2,0.99 0.7,0.05 0.11,1.05 0.82,0.4

6.02 Fall 2012 Lecture 7, Slide #6

 Receiver

•  For the code
p0 = x[n]+x[n-1]+x[n-2]
p1 = x[n] +x[n-2]

•  Received:
000101100110

•  Some errors have
occurred…

•  What’s the 4-bit
message?

: 0111 Most likely: 0111

•  ssage whosei.e., message whose
codewordrd is closest is closest
to rcvd bits

Msg Codeword Received Hamming
distance

0000 000000000000 5
0001 000000111011 -
0010 000011101100 -
0011 000011010111 -
0100 001110110000 -
0101 001110001011 -
0110 001101011100 -
0111 001101100111 000101100110 000101100110 2 2
1000 1000 111011000000 111011000000 -
1001 1001 111011111011 111011111011 -
1010 1010 111000101100 111000101100 -
1011 1011 111000010111 111000010111 -
1100 1100 110101110000 110101110000 -
1101 1101 110101001011 110101001011 -
1110 110110011100 -
1111 110110100111 -

Initial and final state: 00

6.02 Fall 2012 Lecture 7, Slide #7

Vi terbi Algorithm
•  Want: Most likely message sequence

•  Have: (possibly corrupted) received parity sequences
•  Viterbi algorithm for a given K and r:

–  Works incrementally to compute most likely message sequence

–  Uses two metrics

•  Branch metric: BM(xmit,rcvd) proportional to negative log
likelihood, i.e. negative log probability that we receive rcvd,
given that xmit was sent.
–  Hard decision : use digitized bits, compute Hamming distance

between xmit and rcvd. Smaller distance is more likely if BER <
1/2

–  Soft decision : use function of received voltages directly

•  Path metric: PM[s,i] for each state s of the 2K-1 transmitter
states and bit time i , where 0 ≤ i < L = len(message).
–  PM[s,i] = smallest sum of BM(xmit, rcvd) over all message

sequences m that place transmitter in state s at time i
–  PM[s,i+1] computed from PM[s,i] and p0[i],…,pr-1[i]

6.02 Fall 2012 Lecture 7, Slide #8

Hard Decisions

•  As we receive each bit it s immediately digitized to
0 or 1 by comparing it against a threshold

voltage
–  We lose the information about how good the bit is:

a 1 at .9999V is treated the same as a 1 at .5001V

•  The branch metric used in the Viterbi decoder
under hard-decision decoding is the Hamming
distance between the digitized received voltages
and the expected parity bits

•  Throwing away information is (almost) never a good
idea when making decisions
–  Can we come up with a better branch metric that uses

more information about the received voltages?

6.02 Fall 2012 Lecture 7, Slide #9

 Soft-Decision Decoding
•  In practice, the receiver gets a voltage level, V, for each

received parity bit
–  Sender sends V0 or V1 volts; V in (-∞,∞) assuming additive Gaussian

noise

•  Idea: Pass received voltages to decoder before digitizing

•  Define a soft branch metric as the square of the Euclidian
distance between received voltages and expected voltages

 0.0,0.0 1.0,0.0

Vp0,Vp1

0

VVSoft metric when
expected parity bits
are 0,0

s

Vp0
2

+ Vp1
2

•  Soft-decision decoder chooses path that minimizes sum of the
squares of the Euclidean distances between received and
expected voltages
–  Different BM & PM values, but otherwise the same algorithm

0.0,1.0 1.0,1.0

6.02 Fall 2012 Lecture 7, Slide #10

Viterbi Algorithm with Hard Decisions
•  Branch metrics measure the contribution to negative log

likelihood by comparing received parity bits to possible
transmitted parity bits computed from possible messages.

•  Path metric PM[s,i] proportional to negative log likelihood of
transmitter being in state s at time i, assuming the mostly
likely message of length i that leaves the transmitter in state
s.

•  Most likely message? The one that produces the smallest PM
[s,N].

•  At any given time there are 2K-1 most-likely messages we re
tracking time complexity of algorithm grows exponentially
with constraint length K, but only linearly with message
length (as opposed to exponentially in message length for
simple-minded enumeration).

6.02 Fall 2012 Lecture 7, Slide #11

Hard-decision Bra nch Metric
•  BM = Hamming distance

between expected parity bits and
received parity bits

•  Compute BM for each transition
arc in trellis

–  Example: received parity = 00

–  BM(00,00) = 0
BM(01,00) = 1
BM(10,00) = 1
BM(11,00) = 2

•  Will be used in computing
PM[s,i+1] from PM[s,i].

00

01

10

11

0/00
1/11

0/11

1/00

1/01

0/10

0/01
1/10

ime: i i+1
00

0

2

2
0

1
1

1

1

T

S
ta

te

6.02 Fall 2012 Lecture 7, Slide #12

Computing P M[s,i+1]
Starting point: we’ve computed
PM[s,i], shown graphically as label i
trellis box for each state at time i.

Example: PM[00,i] = 1 means there
was 1 bit error detected when
comparing received parity bits to
what would have been transmitted
when sending the most likely
message, considering all messages
that place the transmitter in state 0
at time i.

Q: What’s the most likely state s for
the transmitter at time i?

A: state 00 (smallest PM[s,i])

n

0

1

3

3

2

00

01

10

11

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

2
0

1
1

1
1

6.02 Fall 2012 Lecture 7, Slide #13

Computing PM[s,i+1] cont d.
Q: If the transmitter is in state s at
time i+1, what state(s) could it have
been in at time i?

A: For each state s, there are two
predecessor states α and β in the
trellis diagram

Example: for state 01, α=10 and =11.

Any message sequence that leaves
the transmitter in state s at time i+1
must have left the transmitter in
state α or state β at time i.

1

3

3

2

00

01

10

11

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

2
0

1
1

1
1

6.02 Fall 2012 Lecture 7, Slide #14

Computing PM[s,i+1] cont d.
Example cont d: to arrive in state 01
at time i+1, either

1) The transmitter was in state 10 at
time i and the ith message bit was a
0. If that s the case, the transmitter
sent 10 as the parity bits and there
was 1 bit error since we received 00.
Total bit errors = PM[10,i] + 1 = 4
OR

2) The transmitter was in state 11 at
time i and the ith message bit was a
0. If that s the case, the transmitter
sent 01 as the parity bits and there
was 1 bit error since we received 00.
Total bit errors = PM[11,i] + 1 = 3

Which is more likely?

1

3

3

2

?

00

01

10

11

???

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

Time: i i+1

S
ta

te

00
0
2

2
0

1
1

1
1

6.02 Fall 2012 Lecture 7, Slide #15

1

3

3

2

1

3

3

3

00

01

10

11

11

33

3

3

3

3

3

33

3

3

3

0/00
1/11

0/11

1/00

1/01
0/10

0/01
1/10

Time: i i+1
00

0
2

2
0

1
1

1
1

Computing PM[s,i+1] cont d.
Formalizing the computation:

PM[s,i+1] = min(PM[α,i] + BM[α s],
 PM[β,i] + BM[β s])

Example:

PM[01,i+1] = min(PM[10,i] + 1,

 PM[11,i] + 1)
 = min(3+1,2+1) = 3

Notes:

1)  Remember which arc was min; saved
arcs will form a path through trellis

2)  If both arcs have same sum, break
tie arbitrarily (e.g., when computing
PM[11,i+1])

S
ta

te

6.02 Fall 2012 Lecture 7, Slide #16

Hard-Decision V iterbi Decoding
A walk through the trellis

•  Path metric: number of errors on maximum-likelihood path
to given state (min of all paths leading to state)

•  Branch metric: for each arrow, the Hamming distance
between received parity and expected parity

0

∞

∞

∞

00

01

10

11

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00
11

11

00

01
10

01
10

00 Rcvd: 01 01 10 01 10

6.02 Fall 2012 Lecture 7, Slide #17

Post-decoding BER v. or BSC error prob.

All codes except (7,4) Hamming code
are rate-1/2 (so don’t assume it’s bad;
it actually is better than (8,4) rect parity
and one of the conv. codes

Bottom 2 curves: “good” conv codes
Pink curve: “bad” conv code
What makes a code “good”?

6.02 Fall 2012 Lecture 7, Slide #18

Soft Decoding Beats Hard Decoding

2 dB improvement

6.02 Fall 2012 Lecture 7, Slide #19

Spot Quiz Ti me…

1.  What are the path metrics for the empty boxes
(top to bottom order)?

2.  What is the most-likely state after time step 6?

3.  If the decoder had stopped after time step 2 and
returned the most-likely message, what would the
bits of the message be (careful about order!)?

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

