
 
 

6.02 Fall 2012 
 

Lecture #6 


• Convolutional codes 
• State-machine view & trellis 
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Error Control Codes for Interplanetary 

Space Probes

 

•		 Early Mariner probes, 1962-1967 (Mars, Venus) – 
no ECC 

•		 Later Mariner and Viking probes, 1969-1976  
(Mars, Venus) –  linear block codes, e.g., 

 (32,6,16) bi-orthogonal or Hadamard code  
–		 codewords comprise: the all-0 word, the all-1 word, and 

the other codewords all have sixteen 0’s, sixteen 1’s. The 
complement of each codeword is a codeword. 
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Bi-orthogonal Codes

 

•		 e.g., used on Mariner 9 (1971, Mars orbit) to 
correct picture transmission errors.  
–		 Data word length: k=6 bits, for 64 grayscale values. 

–		 Usable block length n around 30 bits. Could have done 5­
repetition code, but comparable rate with better error 
correction from a [32, 6, 16] Hadamard code.  

–	 Used through the 1980’s. 

•		 The efficient decoding algorithm was an important 
factor in the decision to use this code. The circuitry 
used was called the "Green Machine".  

•		 More generally for such codes,  
d=2^(k-2)n=2^(k-1), 
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Mariner 9 (400 million km trip)

 

•		 “Spacecraft control was through the central 
computer and sequencer which had an onboard 
memory of 512 words. The command system was 
programmed with 86 direct commands, 4 
quantitative commands, and 5 control commands. 
Data was stored on a digital reel-to-reel tape 
recorder. The 168 meter 8-track tape could store 
180 million bits recorded at 132 kbits/s. Playback 
could be done at 16, 8, 4, 2, and 1 kbit/s using 
two tracks at a time. Telecommunications were via 
dual S-band 10 W/20 W transmitters and a single 
receiver through the high gain parabolic antenna, 
the medium gain horn antenna, or the low gain 
omnidirectional antenna.” (NASA) 
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7329 images, e.g.:

 

Image in the public domain. Source: NASA 
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More powerful codes needed for higher 

data rates with limited transmitter power
 
 

•		 Space probe may have a 20W transmitter to cover 
tens of billions of kilometers! 
–	 Part of the secret is the antenna --- directs the beam to 

produce the same received intensity as an omnidirectional 
antenna radiating in the megawatts 

–	 Also “cryogenically-cooled low-noise amplifiers, 
sophisticated receivers, and data coding and error-
correction schemes. These systems can collect, detect, 
lock onto, and amplify a vanishingly small signal that 
reaches Earth from the spacecraft, and can extract data 
from the signal virtually without errors.” (JPL quote) 

•		 Convolutional codes with Viterbi decoding – 
Voyager (1977) onwards, Cassini, Mars Exploration 
Rover, … 
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Saturn and Titan from Cassini, 
 

August 29, 2012

 

Image in the public domain. Source: NASA 
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Phoning home using a K=15, rate=1/6 convolutional code 
82,950 bps 

(Cassini Saturn probe, Mars Pathfinder, Mars Rover) 
Image in the public domain. Source: NASA 
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 Convolutional Codes 
(P  eter Elias, 1955)

•  Like the block codes discussed earlier, send parity 
bits computed from blocks of message bits 
–  Unlike block codes, generally don’t send message bits, send 

only the parity bits! (i.e., “non-systematic”) 

–  The code rate of a convolutional code tells you how many 
parity bits are sent for each message bit.  We’ll mostly be 
talking about rate 1/r codes, i.e., r parity bits/message bit. 

–  Use a sliding window to select which message bits are 
participating in the parity calculations.  The width of the 
window (in bits) is called the code’s constraint length K. 

p0[n] = x[n] + x[n-1] + x[n-2] 

p1[n] = x[n] + x[n-2] Addition mod 2 
(aka XOR) 
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Pa  rity Bit Equations
•  A convolutional code generates sequences of parity bits from 

sequences of message bits by a convolution operation: 
 
 ⎛K−1 ⎞

pi n[ ] = ⎜∑gi j[ ] x n− j ⎟[ ] mod2 ⎜ ⎟
⎝ j=0 ⎠

•  K is the constraint length of the code 
–  The larger K is, the more times a particular message bit is used 

when calculating parity bits 
  greater redundancy 
  better error correction possibilities (usually, though not always) 
 

•  gi is the K-element generator for parity bit pi. 
–  Each element gi[j] is either 0 or 1 

–  More than one parity sequence can be generated from the same 
message; the simplest choice is to use 2 generator polynomials 
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Transmitting Parity Bits 
•  We’ll transmit the parity sequences, not the message itself 

–  As we’ll see, we can recover the message sequences from the 
parity sequences 

–  Each message bit is “spread across” K elements of each parity 
sequence, so the parity sequences are better protection against 
bit errors than the message sequence itself 
 

•  If we’re using multiple generators, construct the transmit 
sequence by interleaving the bits of the parity sequences: 
 
 xmit = p0[0], p1[0], p0[1], p1[1], p  0[2], p1[2],…
 

•  Code rate is 1/number_of_generators 
–  2 generators  rate = ½ 

–  Engineering tradeoff: using more generators improves bit-error 
correction but decreases rate of the code (the number of message 
bits/s that can be transmitted) 
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Example 
•  Using two generators: 

–  g0 = 1, 1, 1, 0, 0, …  abbreviated as 111 for K=3 code 
–  g1 = 1, 0, 1, 0, 0, …  abbreviated as 110 for K=3 code 

 

•  Writing out the equations for the parity sequences: 
–  p0[n] = x[n] + x[n-1] + x[n-2] 

–  p1[n] = x[n] + x[n-2] 
 

•  Let x[n] = [1,0,1,1,…]; x[n]=0 when n<0: 
–  p0[0] = (1 + 0 + 0) mod 2 = 1,  p1[0] = (1 + 0) mod 2 = 1
–  p0[1] = (0 + 1 + 0) mod 2 = 1,  p1[1] = (0 + 0) mod 2 = 0
–  p0[2] = (1 + 0 + 1) mod 2 = 0,  p1[2] = (1 + 1) mod 2 = 0
–  p0[3] = (1 + 1 + 0) mod 2 = 0,  p1[3] = (1 + 0) mod 2 = 1

 

•  Transmit: 1, 1 , 1, 0, 0, 0, 0, 1, … 
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Shift-Register View 
•  One often sees convolutional encoders described with a block 

diagram like the following: 
 
 
 
 
 
 
 
 
 

•  Message bit in, parity bits out 
–  Input bits arrive one-at-a-time from the left 

–  The box computes the parity bits using the incoming bit and the 
K-1 previous message bits 

–  At the end of the bit interval, the saved message bits are shifted 
right by one, and the incoming bit moves into the left position. 

x[n-1] x[n-2] x[n] 

+ 

+ 

mod 2 

mod 2 
p0[n] 

p1[n] 

The values in 
the registers 
define the state 
of the encoder 
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Example: Transmit message 1011 

0 0 1

1

1 

Processing x[0] 

1 0 0

1

0 

Processing x[1] 

0 1 1

0

0 

Processing x[2] 

1 0 1

0

1 

Processing x[3] 

p0[n] = x[n] + x[n-1] + x[n-2] 

p1[n] = x[n] + x[n-2] 

p0[n] 

p1[n] 

x[n-2] x[n-1] x[n] 

Xmit seq: 1, 1, 1, 0, 0, 0, 0, 1, … 
(codeword) 
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State-Machine View 

•  Example: K=3, rate-½ convolutional code 
•  There are 2K-1 states 

•  States labeled with (x[n-1], x[n-2]) value 
•  Arcs labeled with x[n]/p0[n]p1[n] 

•  msg=101100; xmit = 11 10 00 01 01 11 

00 10 

01 11 

0/00 

1/11 

1/10 
0/01 

0/11 1/00 

0/10 1/01 

STARTING STATE S

11

0/0110/011

1/00 1/00

0/10 

p0[n] = x[n] + x[n-1] + x[n-2] 

p1[n] = x[n] + x[n-2] 

(Generators: g0 = 111, g1 = 101) 

The state machine is the same 
for all K=3 codes.  Only the pi 
labels change depending on 
number and values for the 
generator polynomials. 
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Trellis View 

•  State machine unfolded in time (fill in details using 
notes as guide, for the example considered here!)  

00 

01 

10 

11 

00 

01 

10 

11 

00 

01 

10 

11 

00 

01 

10 

11 

n=0            n=1          n=2           n=3        …   
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The P  arity Stream forms a Linear Code

Smallest-weight nonzero codeword has a weight 
that (locally in time) plays a role analogous to d, 
the minimum Hamming distance. It’s called the 
free distance (fd) of the convolutional code. 

What is fd for our example? 

• 

• 
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 Encoding & Decoding Convolutional Codes
•  Transmitter (aka Encoder) 

–  Beginning at starting state, processes message bit-by-bit 
–  For each message bit: makes a state transition, sends p0p1… 

–  Pad message with K-1 zeros to ensure return to starting state 
 

•  Receiver (aka Decoder) 
–  Doesn’t have direct knowledge of transmitter’s state transitions; 

only knows (possibly corrupted) received parity bits, pi 

–  Must find most likely sequence of transmitter states that could 
have generated the received parity bits, pi 

–  If BER < ½, P(more errors) < P(fewer errors) 

–  When BER < ½, maximum-likelihood message sequence is 
the one that generated the codeword (here, sequence of 
parity bits) with the smallest Hamming distance from the 
received codeword (here, parity bits) 

–  I.e., find nearest valid codeword closest to the received 
codeword – Maximum-likelihood (ML) decoding 
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In the absence of noise … 

  Decoding is trivial: 

p0[n] = x[n] + x[n-1] + x[n-2] 

p1[n] = x[n] + x[n-2] 

  Can you see how to recover the input x[.] from the 
parity bits p[.] ? 

  In the presence of errors in the parity stream, 
message bits will get corrupted at about the same 
rate as parity bits, with this simple-minded 

•

•

•

recovery. 



 Spot Quiz!

Consider the convolutional code given by 
 p0[n] = x[n] + x[n-2] + x[n-3] 
 p1[n] = x[n] + x[n-1] + x[n-2] 
 p2[n] = x[n] + x[n-1] + x[n-2] + x[n-3] 

1.  Constraint length, K, of this code = _____ 

2.  Code rate = ____ 

3.  Coefficients of the generators = ____, ____, ____ 

4.  No. of states in state machine of this code = ____ 
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