
 
 

6.02 Fall 2012

Lecture #6

• Convolutional codes
• State-machine view & trellis

6.02 Fall 2012 Lecture 6, Slide #1

rsha10
Rectangle

rsha10
Rectangle

rsha10
Rectangle

rsha10
Rectangle

 

 

 

Error Control Codes for Interplanetary

Space Probes

•		 Early Mariner probes, 1962-1967 (Mars, Venus) –
no ECC

•		 Later Mariner and Viking probes, 1969-1976
(Mars, Venus) – linear block codes, e.g.,

 (32,6,16) bi-orthogonal or Hadamard code
–		 codewords comprise: the all-0 word, the all-1 word, and

the other codewords all have sixteen 0’s, sixteen 1’s. The
complement of each codeword is a codeword.

6.02 Fall 2012 	 Lecture 6, Slide #2

 

 

 

 

 

 

Bi-orthogonal Codes

•		 e.g., used on Mariner 9 (1971, Mars orbit) to
correct picture transmission errors.
–		 Data word length: k=6 bits, for 64 grayscale values.

–		 Usable block length n around 30 bits. Could have done 5­
repetition code, but comparable rate with better error
correction from a [32, 6, 16] Hadamard code.

–	 Used through the 1980’s.

•		 The efficient decoding algorithm was an important
factor in the decision to use this code. The circuitry
used was called the "Green Machine".

•		 More generally for such codes,
d=2^(k-2)n=2^(k-1),

6.02 Fall 2012 	 Lecture 6, Slide #3

 

 

Mariner 9 (400 million km trip)

•		 “Spacecraft control was through the central
computer and sequencer which had an onboard
memory of 512 words. The command system was
programmed with 86 direct commands, 4
quantitative commands, and 5 control commands.
Data was stored on a digital reel-to-reel tape
recorder. The 168 meter 8-track tape could store
180 million bits recorded at 132 kbits/s. Playback
could be done at 16, 8, 4, 2, and 1 kbit/s using
two tracks at a time. Telecommunications were via
dual S-band 10 W/20 W transmitters and a single
receiver through the high gain parabolic antenna,
the medium gain horn antenna, or the low gain
omnidirectional antenna.” (NASA)

6.02 Fall 2012	 Lecture 6, Slide #4• 	 F

7329 images, e.g.:

Image in the public domain. Source: NASA

6.02 Fall 2012 Lecture 6, Slide #5

 

 

 

 

More powerful codes needed for higher

data rates with limited transmitter power

•		 Space probe may have a 20W transmitter to cover
tens of billions of kilometers!
–	 Part of the secret is the antenna --- directs the beam to

produce the same received intensity as an omnidirectional
antenna radiating in the megawatts

–	 Also “cryogenically-cooled low-noise amplifiers,
sophisticated receivers, and data coding and error-
correction schemes. These systems can collect, detect,
lock onto, and amplify a vanishingly small signal that
reaches Earth from the spacecraft, and can extract data
from the signal virtually without errors.” (JPL quote)

•		 Convolutional codes with Viterbi decoding –
Voyager (1977) onwards, Cassini, Mars Exploration
Rover, …

6.02 Fall 2012 	 Lecture 6, Slide #6

Saturn and Titan from Cassini,

August 29, 2012

Image in the public domain. Source: NASA
6.02 Fall 2012 Lecture 6, Slide #7

Phoning home using a K=15, rate=1/6 convolutional code
82,950 bps

(Cassini Saturn probe, Mars Pathfinder, Mars Rover)
Image in the public domain. Source: NASA

6.02 Fall 2012 Lecture 6, Slide #8

6.02 Fall 2012 Lecture 6, Slide #9

 Convolutional Codes
(P eter Elias, 1955)

•  Like the block codes discussed earlier, send parity
bits computed from blocks of message bits
–  Unlike block codes, generally don’t send message bits, send

only the parity bits! (i.e., “non-systematic”)

–  The code rate of a convolutional code tells you how many
parity bits are sent for each message bit. We’ll mostly be
talking about rate 1/r codes, i.e., r parity bits/message bit.

–  Use a sliding window to select which message bits are
participating in the parity calculations. The width of the
window (in bits) is called the code’s constraint length K.

p0[n] = x[n] + x[n-1] + x[n-2]

p1[n] = x[n] + x[n-2] Addition mod 2
(aka XOR)

6.02 Fall 2012 Lecture 6, Slide #10

Pa rity Bit Equations
•  A convolutional code generates sequences of parity bits from

sequences of message bits by a convolution operation:

 ⎛K−1 ⎞

pi n[] = ⎜∑gi j[] x n− j ⎟[] mod2 ⎜ ⎟
⎝ j=0 ⎠

•  K is the constraint length of the code
–  The larger K is, the more times a particular message bit is used

when calculating parity bits
 greater redundancy
 better error correction possibilities (usually, though not always)

•  gi is the K-element generator for parity bit pi.
–  Each element gi[j] is either 0 or 1

–  More than one parity sequence can be generated from the same
message; the simplest choice is to use 2 generator polynomials

6.02 Fall 2012 Lecture 6, Slide #11

Transmitting Parity Bits
•  We’ll transmit the parity sequences, not the message itself

–  As we’ll see, we can recover the message sequences from the
parity sequences

–  Each message bit is “spread across” K elements of each parity
sequence, so the parity sequences are better protection against
bit errors than the message sequence itself

•  If we’re using multiple generators, construct the transmit
sequence by interleaving the bits of the parity sequences:

 xmit = p0[0], p1[0], p0[1], p1[1], p 0[2], p1[2],…

•  Code rate is 1/number_of_generators
–  2 generators rate = ½

–  Engineering tradeoff: using more generators improves bit-error
correction but decreases rate of the code (the number of message
bits/s that can be transmitted)

6.02 Fall 2012 Lecture 6, Slide #12

Example
•  Using two generators:

–  g0 = 1, 1, 1, 0, 0, … abbreviated as 111 for K=3 code
–  g1 = 1, 0, 1, 0, 0, … abbreviated as 110 for K=3 code

•  Writing out the equations for the parity sequences:
–  p0[n] = x[n] + x[n-1] + x[n-2]

–  p1[n] = x[n] + x[n-2]

•  Let x[n] = [1,0,1,1,…]; x[n]=0 when n<0:
–  p0[0] = (1 + 0 + 0) mod 2 = 1, p1[0] = (1 + 0) mod 2 = 1
–  p0[1] = (0 + 1 + 0) mod 2 = 1, p1[1] = (0 + 0) mod 2 = 0
–  p0[2] = (1 + 0 + 1) mod 2 = 0, p1[2] = (1 + 1) mod 2 = 0
–  p0[3] = (1 + 1 + 0) mod 2 = 0, p1[3] = (1 + 0) mod 2 = 1

•  Transmit: 1, 1 , 1, 0, 0, 0, 0, 1, …

6.02 Fall 2012 Lecture 6, Slide #13

Shift-Register View
•  One often sees convolutional encoders described with a block

diagram like the following:

•  Message bit in, parity bits out
–  Input bits arrive one-at-a-time from the left

–  The box computes the parity bits using the incoming bit and the
K-1 previous message bits

–  At the end of the bit interval, the saved message bits are shifted
right by one, and the incoming bit moves into the left position.

x[n-1] x[n-2] x[n]

+

+

mod 2

mod 2
p0[n]

p1[n]

The values in
the registers
define the state
of the encoder

6.02 Fall 2012 Lecture 6, Slide #14

Example: Transmit message 1011

0 0 1

1

1

Processing x[0]

1 0 0

1

0

Processing x[1]

0 1 1

0

0

Processing x[2]

1 0 1

0

1

Processing x[3]

p0[n] = x[n] + x[n-1] + x[n-2]

p1[n] = x[n] + x[n-2]

p0[n]

p1[n]

x[n-2] x[n-1] x[n]

Xmit seq: 1, 1, 1, 0, 0, 0, 0, 1, …
(codeword)

6.02 Fall 2012 Lecture 6, Slide #15

State-Machine View

•  Example: K=3, rate-½ convolutional code
•  There are 2K-1 states

•  States labeled with (x[n-1], x[n-2]) value
•  Arcs labeled with x[n]/p0[n]p1[n]

•  msg=101100; xmit = 11 10 00 01 01 11

00 10

01 11

0/00

1/11

1/10
0/01

0/11 1/00

0/10 1/01

STARTING STATE S

11

0/0110/011

1/00 1/00

0/10

p0[n] = x[n] + x[n-1] + x[n-2]

p1[n] = x[n] + x[n-2]

(Generators: g0 = 111, g1 = 101)

The state machine is the same
for all K=3 codes. Only the pi
labels change depending on
number and values for the
generator polynomials.

6.02 Fall 2012 Lecture 6, Slide #16

Trellis View

•  State machine unfolded in time (fill in details using
notes as guide, for the example considered here!)

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

n=0 n=1 n=2 n=3 …

6.02 Fall 2012 Lecture 6, Slide #17

The P arity Stream forms a Linear Code

Smallest-weight nonzero codeword has a weight
that (locally in time) plays a role analogous to d,
the minimum Hamming distance. It’s called the
free distance (fd) of the convolutional code.

What is fd for our example?

• 

• 

6.02 Fall 2012 Lecture 6, Slide #18

 Encoding & Decoding Convolutional Codes
•  Transmitter (aka Encoder)

–  Beginning at starting state, processes message bit-by-bit
–  For each message bit: makes a state transition, sends p0p1…

–  Pad message with K-1 zeros to ensure return to starting state

•  Receiver (aka Decoder)
–  Doesn’t have direct knowledge of transmitter’s state transitions;

only knows (possibly corrupted) received parity bits, pi

–  Must find most likely sequence of transmitter states that could
have generated the received parity bits, pi

–  If BER < ½, P(more errors) < P(fewer errors)

–  When BER < ½, maximum-likelihood message sequence is
the one that generated the codeword (here, sequence of
parity bits) with the smallest Hamming distance from the
received codeword (here, parity bits)

–  I.e., find nearest valid codeword closest to the received
codeword – Maximum-likelihood (ML) decoding

6.02 Fall 2012 Lecture 6, Slide #19

In the absence of noise …

  Decoding is trivial:

p0[n] = x[n] + x[n-1] + x[n-2]

p1[n] = x[n] + x[n-2]

  Can you see how to recover the input x[.] from the
parity bits p[.] ?

  In the presence of errors in the parity stream,
message bits will get corrupted at about the same
rate as parity bits, with this simple-minded

•

•

•

recovery.

 Spot Quiz!

Consider the convolutional code given by
 p0[n] = x[n] + x[n-2] + x[n-3]
 p1[n] = x[n] + x[n-1] + x[n-2]
 p2[n] = x[n] + x[n-1] + x[n-2] + x[n-3]

1.  Constraint length, K, of this code = _____

2.  Code rate = ____

3.  Coefficients of the generators = ____, ____, ____

4.  No. of states in state machine of this code = ____

6.02 Fall 2012 Lecture 6, Slide #20

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

