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•   Error correction for linear block codes 
-  Syndrome decoding 

•  Burst errors and interleaving 
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Matrix Notation for Linear Block Codes 
Task: given k-bit message, compute n-bit codeword.  We can 
use standard matrix arithmetic (modulo 2) to do the job.  For 
example, here’s how we would describe the (9,4,4) rectangular 
code that includes an overall parity bit. 

D ⋅G =C

⎡1 0 0 0 1 0 1 0 1⎤
⎢0 1 0 0 1 0 0 1 1⎥

D D D D • ⎢[ ] ⎥
1 2 3 4 = D1 D2 D3 D4[ P1 P P

⎥ 2 P3 P
⎢0 0 1 0 0 1 1 0 1 4 5

⎢ ⎥
⎣0 0 0 1 0 1 0 1 1⎦ 1×n 

1×k k×n code word vector 
message generator in the row space of G 
vector matrix 

⎡ ⎤
The generator matrix, Gkxn = Ik A⎣⎢ ×k k×(n−k ) ⎦⎥

]
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A closer look at the Parity Check Matrix  A

k

 Parity equation Pj =∑Diaij
i=1

k

Parity relation Pj +∑Diaij = 0
i=1

A = [aij ]

So entry aij in i-th row, j-th column of A specifies 
whether data bit Di is used in constructing parity bit Pj 
 
Questions: Can two columns of A be the same? Should two 
columns of A be the same? How about rows? 
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Parity Check Matrix 

Can restate the codeword For (9,4,4) example 
Dgeneration process as a ⎡ 1 ⎤
⎢

parity check or D ⎥
⎢ 2 ⎥

nullspace check ⎡1 1 0 0 1 0 0 0 0⎤ ⎢D3 ⎥
⎢ 1 1 0 1 0 0 0⎥ ⎢ ⎥0 0 D

C. HT 0 ⎢ ⎥ ⎢ 4 ⎥
= ⎢1 0 1 0 0 0 1 0 0⎥ ⋅ ⎢ P ⎥

1 = 05x1
⎢ ⎥ ⎢ ⎥
0 1 0 1 0 0 0 1 0⎢ ⎥ ⎢P2 ⎥

H T ⎢⎣1 1 1 1 0 0 0 0 1⎥ ⎢ ⎥⎦ P
⎢ 3 ⎥

(n−k )xn ⋅C1xn = 0 ⎢P4 ⎥
(n-k) x n ⎢ ⎥

⎣ P5 ⎦
parity check 

The parity check matrix,  n×1 
matrix 

code word 
vector 

(transpose) 
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Extr  acting d from H

•  Claim: The minimum distance d of the code C is 
the minimum number of columns of H that are 
linearly dependent, i.e., that can be combined to 
give the zero vector 

•  Proof: d = minimum-weight nonzero codeword in C 

•  One consequence: If A has two identical rows, then 
AT has two identical columns, which means d is no 
greater than 2, so error correction is not possible. 
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Simple-minded Decoding 

•  Compare received n-bit word R = C + E against 
each of  2k valid codewords to see which one is HD 
1 away 

•  Doesn’t exploit the nice linear structure of the 
code! 

 



Syndrome Decoding – Matrix Fo  rm
Task: given n-bit code word, compute (n-k) syndrome bits.  
Again we can use matrix multiply to do the job.   

received word R =C +E
(n-k) x 1 

compute Syndromes  H RT S syndrome 
on receive word ⋅ =

vector 

To figure out the relationship of Syndromes to errors: 

H ⋅ (C +E)T = S H ⋅CT
use = 0

H ⋅ET = S figure-out error type 
from Syndrome 

Knowing the error patterns we want to correct for, we can 
compute k Syndrome vectoroffline  (or n, if you want to correct 
errors in the parity bits, but this is not needed) and then do a 
lookup after the Syndrome is calculated from a received word 
to find the error type that occurred  
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 Syndrome Decoding – Steps

Step 1: For a given code and error patterns Ei, precompute  
Syndromes and store them 

H ⋅Ei = Si

Step 2: For each received word, H ⋅R = S
compute the Syndrome 

Step 3: Find l such that Sl == S and apply correction for error El 

C = R+El
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 Syndrome Decoding – Steps (9,4,4) example
Codeword generation: 

⎡1 0 0 0 1 0 1 0 1⎤
⎢0 1 0 0 1 0 0 1 1⎥

1 1 1 1 ⋅ ⎢[ ] ⎥ = 1 1 1[ 1 0 0 0 0 0]
⎢0 0 1 0 0 1 1 0 1⎥
⎢ ⎥
⎣0 0 0 1 0 1 0 1 1⎦

Received word in error:generation: 

1 0 1 1 0 0 0 0 0 = 1 1 1 1 0 0 0 0[ ] 0[ +]
0 1 0 0 0 0 0 0 0[

Syndrome computation  ⎡1⎤
 ⎢0⎥for received word ⎥⎢

⎡1 1 0 0 1 0 0 0 0⎤ ⎢1⎥ ⎡1⎤
⎢0 0 1 1 0 1 0 0 0⎥ ⎢ ⎥ ⎢0⎥1⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢1 0 1 0 0 0 1 0 0⎥ ⋅ ⎢0⎥ = ⎢0⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 1 0 1 0 0 0 1 0 ⎢0⎥ 1⎢ ⎥ ⎢ ⎥
⎢1 1 1 1 0 0 0 0 1⎥ ⎢0⎥ ⎢ ⎥⎣1⎣ ⎦ ⎦⎢ ⎥

⎢0⎥
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Precomputed Syndrome for  
a given error pattern 
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 Syndrome Decoding – Steps (9,4,4) example

Correction: 
 
Since received word Syndrome [1 0 0 1 1]T matches the  
Syndrome of the error [0 1 0 0 0 0 0 0 0],  
apply this error to the received word to recover the original codeword 

Received word 

1 1 1 1 0 0 0 0 0 = 1 0 1 1 0 0 0 0[ ] [ 0 +]
0 1 0 0 0 0 0 0 0[

Corrected codeword 

Error pattern from  
matching Syndrome 

]
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Linear Block Codes: Wrap-Up 

•  (n,k,d) codes have rate k/n and can correct up to 
floor((d-1)/2) bit errors 

•  Code words are linear operations over message 
bits: sum of any two code words is a code word 
–  Message + 1 parity bit: (n+1,n,2) code 

•  Good code rate, but only 1-bit error detection 

–  Replicating each bit c times is a (c,1,c) code 
•  Simple way to get great error correction; poor code rate 

–  Hamming single-error correcting codes are  
(n, n-m, 3) where n = 2m - 1 for m > 1 

•  Adding an overall parity bit makes the code (n+1,n-m,4) 

–  Rectangular parity codes are (rc+r+c, rc, 3) codes 
•  Rate not as good as Hamming codes 

•  Syndrome decoding: general efficient approach for 
decoding linear block codes 



6.02 Fall 2012 Lecture 5, Slide #12 

Burst Errors 

•  Correcting single-bit errors is good 

•  Similar ideas could be used to correct 
independent multi-bit errors 

•  But in many situations errors come in 
bursts: correlated multi-bit errors (e.g., 
fading or burst of interference on wireless 
channel, damage to storage media etc.).  
How does single-bit error correction help 
with that? 
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 Independent multi-bit errors

e.g., m errors in n bits 

⎛n ⎞
⎜ ⎟ pm (1− p)n−m
⎝m⎠

⎛n ⎞ n!
⎜ ⎟ =
⎝m⎠ (n−m)!(m)!

⎛n ⎞
n

n!≈ 2πn ⎜ ⎟
⎝ e ⎠
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Coping with Burst Errors by Interleav  ing

Well, can we think of a way to turn a B-bit error burst 
into B single-bit errors? 

Row-by-row Col-by-col 
B transmission B transmission 

order order 

Problem: Bits from a Solution: interleave bits 
particular codeword are from B different codewords.  
transmitted sequentially, Now a B-bit burst produces 
so a B-bit burst produces 1-bit errors in B different 
multi-bit errors. codewords. 
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Framing 
•  Looking at a received bit stream, how do we know 

where a block of interleaved codewords begins? 
•  Physical indication (transmitter turns on, 

beginning of disk sector, separate control channel) 
•  Place a unique bit pattern (frame sync sequence) in 

the bit stream to mark start of a block 
–  Frame = sync pattern + interleaved code word block 
–  Search for sync pattern in bit stream to find start of frame 
–  Bit pattern can’t appear elsewhere in frame (otherwise our 

search will get confused), so have to make sure no legal 
combination of codeword bits can accidentally generate 
the sync pattern (can be tricky…) 

–  Sync pattern can’t be protected by ECC, so errors may 
cause us to lose a frame every now and then, a problem 
that will need to be addressed at some higher level of the 
communication protocol. 
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Summary: example channel coding steps 
1.  Break message stream into k-bit 011011101101 

blocks. Step 1: k=4 

2.  Add redundant info in the form of 0110 
(n-k) parity bits to form n-bit 1110 

1101 
codeword.  Goal: choose parity Step 2: (8,4,3) code 
bits so we can correct single-bit 
errors. 01101111 

11100101 
3.  Interleave bits from a group of B 11010110 

codewords to protect against B- Step 3: B = 3 
bit burst errors. 011111110001100111101110 

4.  Add unique pattern of bits to Step 4: sync = 0111110 
start of each interleaved 
codeword block so receiver can 011111001111011100011001111001110 
tell how to extract blocks from 

Sync pattern has five consecutive 1’s.  To 
received bitstream. prevent sync from appearing in message, 

5.  Send new (longer) bitstream to “bit-stuff” 0’s after any sequence of four 
1’s in the message.  This step is easily transmitter. reversed at receiver (just remove 0 after 
any sequence of four consecutive 1’s in 
the message). 
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Summary: example error correction steps 
1.  Search through received bit 011111001111011100100001111001110 

stream for sync pattern, Step 1: sync = 0111110 
extract interleaved codeword 
block 011111110010000111101110 

2.  De-interleave the bits to form Step 2: B = 3, n = 8 

B n-bit codewords 01100111 
3.  Check parity bits in each code 11110101 

11000110 
word to see if an error has 

Step 3: (8,4,3) code 
occurred.  If there’s a single-
bit error, correct it. 010   110 0 

4.  Extract k message bits from 101   111   001 
each corrected codeword and 11    01    10 
concatenate to form message Step 4 
stream. 

0110 1110 1101 

   11
   0 10111

010

11    01    10

11
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