
6.02 Fall 2012 Lecture 5, Slide #1

6.02 Fall 2012
Lecture #5

•  Error correction for linear block codes
-  Syndrome decoding

•  Burst errors and interleaving

6.02 Fall 2012 Lecture 5, Slide #2

Matrix Notation for Linear Block Codes
Task: given k-bit message, compute n-bit codeword. We can
use standard matrix arithmetic (modulo 2) to do the job. For
example, here’s how we would describe the (9,4,4) rectangular
code that includes an overall parity bit.

D ⋅G =C

⎡1 0 0 0 1 0 1 0 1⎤
⎢0 1 0 0 1 0 0 1 1⎥

D D D D • ⎢[] ⎥
1 2 3 4 = D1 D2 D3 D4[P1 P P

⎥ 2 P3 P
⎢0 0 1 0 0 1 1 0 1 4 5

⎢ ⎥
⎣0 0 0 1 0 1 0 1 1⎦ 1×n

1×k k×n code word vector
message generator in the row space of G
vector matrix

⎡ ⎤
The generator matrix, Gkxn = Ik A⎣⎢ ×k k×(n−k) ⎦⎥

]

6.02 Fall 2012 Lecture 5, Slide #3

A closer look at the Parity Check Matrix A

k

 Parity equation Pj =∑Diaij
i=1

k

Parity relation Pj +∑Diaij = 0
i=1

A = [aij]

So entry aij in i-th row, j-th column of A specifies
whether data bit Di is used in constructing parity bit Pj

Questions: Can two columns of A be the same? Should two
columns of A be the same? How about rows?

6.02 Fall 2012 Lecture 5, Slide #4

Parity Check Matrix

Can restate the codeword For (9,4,4) example
Dgeneration process as a ⎡ 1 ⎤
⎢

parity check or D ⎥
⎢ 2 ⎥

nullspace check ⎡1 1 0 0 1 0 0 0 0⎤ ⎢D3 ⎥
⎢ 1 1 0 1 0 0 0⎥ ⎢ ⎥0 0 D

C. HT 0 ⎢ ⎥ ⎢ 4 ⎥
= ⎢1 0 1 0 0 0 1 0 0⎥ ⋅ ⎢ P ⎥

1 = 05x1
⎢ ⎥ ⎢ ⎥
0 1 0 1 0 0 0 1 0⎢ ⎥ ⎢P2 ⎥

H T ⎢⎣1 1 1 1 0 0 0 0 1⎥ ⎢ ⎥⎦ P
⎢ 3 ⎥

(n−k)xn ⋅C1xn = 0 ⎢P4 ⎥
(n-k) x n ⎢ ⎥

⎣ P5 ⎦
parity check

The parity check matrix, n×1
matrix

code word
vector

(transpose)

6.02 Fall 2012 Lecture 5, Slide #5

Extr acting d from H

•  Claim: The minimum distance d of the code C is
the minimum number of columns of H that are
linearly dependent, i.e., that can be combined to
give the zero vector

•  Proof: d = minimum-weight nonzero codeword in C

•  One consequence: If A has two identical rows, then
AT has two identical columns, which means d is no
greater than 2, so error correction is not possible.

6.02 Fall 2012 Lecture 5, Slide #6

Simple-minded Decoding

•  Compare received n-bit word R = C + E against
each of 2k valid codewords to see which one is HD
1 away

•  Doesn’t exploit the nice linear structure of the
code!

Syndrome Decoding – Matrix Fo rm
Task: given n-bit code word, compute (n-k) syndrome bits.
Again we can use matrix multiply to do the job.

received word R =C +E
(n-k) x 1

compute Syndromes H RT S syndrome
on receive word ⋅ =

vector

To figure out the relationship of Syndromes to errors:

H ⋅ (C +E)T = S H ⋅CT
use = 0

H ⋅ET = S figure-out error type
from Syndrome

Knowing the error patterns we want to correct for, we can
compute k Syndrome vectoroffline (or n, if you want to correct
errors in the parity bits, but this is not needed) and then do a
lookup after the Syndrome is calculated from a received word
to find the error type that occurred

6.02 Fall 2012 Lecture 5, Slide #7

 Syndrome Decoding – Steps

Step 1: For a given code and error patterns Ei, precompute
Syndromes and store them

H ⋅Ei = Si

Step 2: For each received word, H ⋅R = S
compute the Syndrome

Step 3: Find l such that Sl == S and apply correction for error El

C = R+El

6.02 Fall 2012 Lecture 5, Slide #8

 Syndrome Decoding – Steps (9,4,4) example
Codeword generation:

⎡1 0 0 0 1 0 1 0 1⎤
⎢0 1 0 0 1 0 0 1 1⎥

1 1 1 1 ⋅ ⎢[] ⎥ = 1 1 1[1 0 0 0 0 0]
⎢0 0 1 0 0 1 1 0 1⎥
⎢ ⎥
⎣0 0 0 1 0 1 0 1 1⎦

Received word in error:generation:

1 0 1 1 0 0 0 0 0 = 1 1 1 1 0 0 0 0[] 0[+]
0 1 0 0 0 0 0 0 0[

Syndrome computation ⎡1⎤
 ⎢0⎥for received word ⎥⎢

⎡1 1 0 0 1 0 0 0 0⎤ ⎢1⎥ ⎡1⎤
⎢0 0 1 1 0 1 0 0 0⎥ ⎢ ⎥ ⎢0⎥1⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢1 0 1 0 0 0 1 0 0⎥ ⋅ ⎢0⎥ = ⎢0⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 1 0 1 0 0 0 1 0 ⎢0⎥ 1⎢ ⎥ ⎢ ⎥
⎢1 1 1 1 0 0 0 0 1⎥ ⎢0⎥ ⎢ ⎥⎣1⎣ ⎦ ⎦⎢ ⎥

⎢0⎥
⎢0⎥6.02 Fall 2012 ⎣ ⎦ ⎣ ⎦Lecture 5, Slide #9

]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
1
0
0
1

0
0
0
0
0
0
0
1
0

100001111
010001010
001000101
000101100
000010011

Precomputed Syndrome for
a given error pattern

6.02 Fall 2012 Lecture 5, Slide #10

 Syndrome Decoding – Steps (9,4,4) example

Correction:

Since received word Syndrome [1 0 0 1 1]T matches the
Syndrome of the error [0 1 0 0 0 0 0 0 0],
apply this error to the received word to recover the original codeword

Received word

1 1 1 1 0 0 0 0 0 = 1 0 1 1 0 0 0 0[] [0 +]
0 1 0 0 0 0 0 0 0[

Corrected codeword

Error pattern from
matching Syndrome

]

6.02 Fall 2012 Lecture 5, Slide #11

Linear Block Codes: Wrap-Up

•  (n,k,d) codes have rate k/n and can correct up to
floor((d-1)/2) bit errors

•  Code words are linear operations over message
bits: sum of any two code words is a code word
–  Message + 1 parity bit: (n+1,n,2) code

•  Good code rate, but only 1-bit error detection

–  Replicating each bit c times is a (c,1,c) code
•  Simple way to get great error correction; poor code rate

–  Hamming single-error correcting codes are
(n, n-m, 3) where n = 2m - 1 for m > 1

•  Adding an overall parity bit makes the code (n+1,n-m,4)

–  Rectangular parity codes are (rc+r+c, rc, 3) codes
•  Rate not as good as Hamming codes

•  Syndrome decoding: general efficient approach for
decoding linear block codes

6.02 Fall 2012 Lecture 5, Slide #12

Burst Errors

•  Correcting single-bit errors is good

•  Similar ideas could be used to correct
independent multi-bit errors

•  But in many situations errors come in
bursts: correlated multi-bit errors (e.g.,
fading or burst of interference on wireless
channel, damage to storage media etc.).
How does single-bit error correction help
with that?

6.02 Fall 2012 Lecture 5, Slide #13

 Independent multi-bit errors

e.g., m errors in n bits

⎛n ⎞
⎜ ⎟ pm (1− p)n−m
⎝m⎠

⎛n ⎞ n!
⎜ ⎟ =
⎝m⎠ (n−m)!(m)!

⎛n ⎞
n

n!≈ 2πn ⎜ ⎟
⎝ e ⎠

6.02 Fall 2012 Lecture 5, Slide #14

Coping with Burst Errors by Interleav ing

Well, can we think of a way to turn a B-bit error burst
into B single-bit errors?

Row-by-row Col-by-col
B transmission B transmission

order order

Problem: Bits from a Solution: interleave bits
particular codeword are from B different codewords.
transmitted sequentially, Now a B-bit burst produces
so a B-bit burst produces 1-bit errors in B different
multi-bit errors. codewords.

6.02 Fall 2012 Lecture 5, Slide #15

Framing
•  Looking at a received bit stream, how do we know

where a block of interleaved codewords begins?
•  Physical indication (transmitter turns on,

beginning of disk sector, separate control channel)
•  Place a unique bit pattern (frame sync sequence) in

the bit stream to mark start of a block
–  Frame = sync pattern + interleaved code word block
–  Search for sync pattern in bit stream to find start of frame
–  Bit pattern can’t appear elsewhere in frame (otherwise our

search will get confused), so have to make sure no legal
combination of codeword bits can accidentally generate
the sync pattern (can be tricky…)

–  Sync pattern can’t be protected by ECC, so errors may
cause us to lose a frame every now and then, a problem
that will need to be addressed at some higher level of the
communication protocol.

6.02 Fall 2012 Lecture 5, Slide #16

Summary: example channel coding steps
1.  Break message stream into k-bit 011011101101

blocks. Step 1: k=4

2.  Add redundant info in the form of 0110
(n-k) parity bits to form n-bit 1110

1101
codeword. Goal: choose parity Step 2: (8,4,3) code
bits so we can correct single-bit
errors. 01101111

11100101
3.  Interleave bits from a group of B 11010110

codewords to protect against B- Step 3: B = 3
bit burst errors. 011111110001100111101110

4.  Add unique pattern of bits to Step 4: sync = 0111110
start of each interleaved
codeword block so receiver can 011111001111011100011001111001110
tell how to extract blocks from

Sync pattern has five consecutive 1’s. To
received bitstream. prevent sync from appearing in message,

5.  Send new (longer) bitstream to “bit-stuff” 0’s after any sequence of four
1’s in the message. This step is easily transmitter. reversed at receiver (just remove 0 after
any sequence of four consecutive 1’s in
the message).

6.02 Fall 2012 Lecture 5, Slide #17

Summary: example error correction steps
1.  Search through received bit 011111001111011100100001111001110

stream for sync pattern, Step 1: sync = 0111110
extract interleaved codeword
block 011111110010000111101110

2.  De-interleave the bits to form Step 2: B = 3, n = 8

B n-bit codewords 01100111
3.  Check parity bits in each code 11110101

11000110
word to see if an error has

Step 3: (8,4,3) code
occurred. If there’s a single-
bit error, correct it. 010 110 0

4.  Extract k message bits from 101 111 001
each corrected codeword and 11 01 10
concatenate to form message Step 4
stream.

0110 1110 1101

 11
 0 10111

010

11 01 10

11

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

