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Embedding for Structural Separation 
Encode so that the codewords are far enough  from 
each other 
Likely error patterns shouldn’t transform one codeword 
to another 
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10 
single-bit error may 
cause 00 to be 10 
(or 01) 
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Code: nodes chosen in 
hypercube + mapping  
of message bits to nodes 

If we choose 2k out of 
2n nodes, it means 
we can map all k-bit  
message strings in a 
space of n-bit codewords. 
The code rate is k/n. 
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If d is the minimum Hamming distance between 
codewords, we can:  
 
•  detect all patterns of up to t bit errors 
    if and only if  d ≥ t+1 
 
•  correct all patterns of up to t bit errors  
    if and only if  d ≥ 2t+1 

•  detect all patterns of up to tD bit errors  
    while correcting all patterns of tC (<tD) errors  
    if and only if     d ≥ tC+tD+1   
 
e.g.:                                                               d=4,          

              tC=1, tD=2 

Minimum Hamming Distance of Code vs.  
Detection & Correction Capabilities 

                         



 Linear Block Codes

Block code: k message bits encoded to n code bits 
i.e., each of 2k messages encoded into a unique n-bit 
codeword via a linear transformation. 
 
Key property: Sum of any two codewords is also a 
codeword � necessary and sufficient for code to be 
linear. 
 
(n,k) code has rate k/n. 
Sometime written as (n,k,d), where d is the minimum 
Hamming Distance of the code. 
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Gener  ator Matrix of Linear Block Code
 
Linear transformation: 
 
                                    C=D.G 
 
C is an n-element row vector containing the codeword 
 
D is a k-element row vector containing the message 
 
G is the kxn generator matrix 
 
Each codeword bit is a specified linear combination of 
message bits.  
 
Each codeword is a linear combination of rows of G. 
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(n,k) Systematic Linear Block Codes 
•  Split data into k-bit blocks 
•  Add (n-k) parity bits to each block using (n-k) linear 

equations, making each block n bits long 

•  Every linear code can be represented by an equivalent 
systematic form --- ordering is not significant, direct 
inclusion of k message bits in n-bit codeword is. 

•  Corresponds to using invertible transformations on 
rows and permutations on columns of G to get  

•  G = [I | A] --- identity matrix in the first k columns 
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Example: Rectangular Parity Codes 

D1 D2 

D3 D4 

P3 P4 

P1 

P1 is parity bit 
for row #1 

Idea: start with rectangular 
array of data bits, add parity 
checks for each row and 
column.  Single-bit error in 
data will show up as parity P2 (n,k,d)=? 
errors in a particular row 
and column, pinpointing the P4 is parity bit 
bit that has the error. for column #2 

0 1 1 0 1 1 0 1 1 

1 1 0 1 0 0 1 1 1 

1 0 1 0 1 0 

Parity for each row Parity check fails for Parity check only fails 
and column is row #2 and column #2 for row #2  
correct ⇒ no errors ⇒ bit D4 is incorrect ⇒ bit P2 is incorrect 



 Rectangular Code Corrects Single Errors

Claim: The min HD of the rectangular code with r 
rows and c columns is 3.  Hence, it is a single 
error correction (SEC) code. 

Code rate = rc / (rc + r + c). 
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D1 D2 

D5 D6 

P3 

P5 

P1 

P2 

D3 D4 

D7 D8 

D9 D10 D11 D12 

P4 P7 

If we add an overall parity bit P, 
we get a (rc+r+c+1, rc, 4) code 
 
Improves error detection but not 
correction capability P

Proof: Three cases. 
6 

(1) Msgs with HD 1 � differ in 1 row and 1 col parity 
(2) Msgs with HD 2 � differ in either 2 rows OR 2 cols 
or both � HD ≥ 4 
(3) Msgs with HD 3 or more � HD ≥ 4 

P 



 Matrix Notation
Task: given k-bit message, compute n-bit codeword.  We can 
use standard matrix arithmetic (modulo 2) to do the job.  For 
example, here’s how we would describe the (9,4,4) rectangular 
code that includes an overall parity bit. 

1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 1⎥

D1 D2 D3 D4[ ] ⎥ = D D D D[ P P P P P ]
0 0 1 0 0 1 1 0 1⎥ 1 2 3 4 1 2 3 4 5

⎥0 0 0 1 0 1 0 1 1
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•

1×k k×n 1×n 
message generator code word 
vector matrix vector 

The generator matrix, Gkxn = Ik×k Ak×(n−k )
⎡
⎣⎢

⎤
⎦⎥

D1xk ⋅Gkxn =C1xn



Decoding Rectangular P  arity Codes

Receiver gets possibly corrupted word, w. 

Calculates all the parity bits from the data bits. 

If no parity errors, return rc bits of data. 

Single row or column parity bit error � rc data 
bits are fine, return them 

If parity of row x and parity of column y are in 
error, then the data bit in the (x,y) position is 
wrong; flip it and return the rc data bits 

All other parity errors are uncorrectable.  Return 
the data as-is, flag an “uncorrectable error” 
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Let’  s do some rectangular parity decoding
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Received codewords 

1 0 1 

0 1 0 

0 1 1. Decoder action: ________________ 

0 0 0 

1 1 1 

1 1 2. Decoder action: ________________ 

0 0 1 

0 1 0 

0 0 3. Decoder action: ________________ 

D1 D2 P1 

D3 D4 P2 

P3 P4 



How Many Parity Bits Do Really We Need? 
•  We have n-k parity bits, which collectively can 

represent 2n-k possibilities 
•  For single-bit error correction, parity bits need to 

represent two sets of cases: 
–  Case 1: No error has occurred (1 possibility) 
–  Case 2: Exactly one of the code word bits has an 

error (n possibilities, not k) 

•  So we need n+1 ≤ 2n-k  

                        n ≤ 2n-k – 1 
•  Rectangular codes satisfy this with big margin --- 

inefficient 
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 Hamming Codes

•  Hamming codes correct single errors with the 
minimum number of parity bits: 

                n = 2n-k – 1 

•   (7,4,3) 
•   (15,11,3) 

•   (2m –1,2m -1-m,3)  
 

•  --- “perfect codes” (but not best!) 
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Towards More Efficient Codes:  
(7,4,3) Hamming Code Example 

•  Use minimum number of parity bits, each covering 
a subset of the data bits. 

•  No two message bits belong to exactly the same 
subsets, so a single-bit error
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 will generate a unique 
set of parity check errors. 

Suppose we check the 
parity and discover that P1 

Modulo-2 
D and P3 indicate an error? 

addition, P 1 1 P2     bit D2 must have flipped 
aka XOR  

D What if only P2 indicates 
4 

D2 D an error? 
P 3     P2 itself had the error! 1 = D1+D2+D4 
P2 = D1+D3+D4 

PP 3 3 = D2+D3+D4 

D1+D



 Logic Behind Hamming Code Construction

•  Idea: Use parity bits to cover each axis of the 
binary vector space 
–  That way, all message bits will be covered with a unique 

combination of parity bits 
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Index 1 2 3 4 5 6 7 

Binary 
index 

001 010 011 100 101 110 111 

(7,4) 
code 

P1 P2 D1 P3 D2 D3 D4 

P1 with binary index 001 covers 
P1 = D1+D2+D4  
P2 = D1+D3+D4 D1 with binary index 011 
P3 = D2+D3+D4 D2 with binary index 101 

D4 with binary index 111 
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Syndrome Decoding: Idea 
•  After receiving the possibly corrupted message (use 

’ to indicate possibly erroneous symbol), compute a 
syndrome bit (Ei) for each parity bit 
 
 
 

•  If all the Ei are zero: no errors 

•  Otherwise use the particular combination of the Ei 
to figure out correction 
 
 

E1 = D’1 + D’2 + D’4 + P’1 
E2 = D’1 + D’3 + D’4 + P’2 

E3 = D’2 + D’3 + D’4 + P’3 

0 = D1+D2+D4+P1 
0 = D1+D3+D4+P2 

0 = D2+D3+D4+P3 

Index 1 2 3 4 5 6 7

Binary 
index

001 010 011 100 101 110 111

(7,4) 
code

P1 P2 D1 P3 D2 D3 D4



Constr  aints for more than single-bit errors

Code parity constraint inequality for single-bit errors 

1+ n ≤ 2n-k 

Write-out the inequality for t-bit errors  
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 Elementary Combinatorics

•  Given n objects, in how many ways can we choose 
m of them? 

 

If the ordering of the m selected objects matters, then  
         n(n-1)(n-2) … (n-m+1) = n!/(n-m)!  

 
If the ordering of the m selected objects doesn’t 
matter, then the above expression is too large by a 
factor m!, so  

 ⎛n ⎞ n!
“n choose m” =    ⎜ ⎟ =

⎝m⎠ (n−m)!m!
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Error-Correcting Codes occur in many 
other contexts too 

•  e.g., ISBN numbers for books,  
      0-691-12418-3  

(Luenberger’s Information Science) 

•  1D1+ 2D2+3D3+…+10D10 = 0 mod 11 

Detects single-digit errors, and transpositions  
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