
 
 

6.02 Fall 2012 
 
Lecture #2 
 

• More on entropy, coding and Huffman codes 
• Lempel-Ziv-Welch adaptive variable-length compression 
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Entropy and Coding


•		 The entropy H(S) of a source S at some time 

represents the uncertainty about the source output 
at that time, or the expected information in the 
emitted symbol. 

•		 If the source emits repeatedly, choosing 
independently at each time from the same fixed 
distribution, we say the source generates 
independent and identically distributed (iid) 
symbols. 

•		 With information being produced at this average 
rate of H(S) bits per emission, we need to transmit 
at least H(S) binary digits per emission on average 
(since the maximum information a binary digit can 
carry is one bit). 
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Bounds on Expected Code Length 
 
•		 We limit ourselves to instantaneously decodable 

(i.e., prefix-free) codes --- these put the symbols at 
the leaves of a code tree. 

•		 If L is the expected length of the code, the 
reasoning on the previous slide suggests that we 
need H(S) ≤ L. The proof of this bound is not hard, 
see for example the very nice book by Luenberger, 
Information Science, 2006. 

•	 Shannon showed how to construct codes satisfying


 L ≤ H(S)+1 (see Luenberger for details), but did not 


have a construction for codes with minimal

 expected length. 


•		 Huffman came up  with such a construction. 
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2H(S) ≤ 2L ≤ 2H(S)+1 

 
 

 

 

 

Huffman Coding


•		 Given the symbol probabilities, Huffman finds an 

instantaneously decodable code of minimal 
expected length L, and satisfying 

H(S) 

≤ L ≤ H(S)+1 
•		 Instead of coding the individual symbols of an iid 

source, we could code pairs sisj, whose 
probabilities are pipj . The entropy of this “super-
source” is 2H(S) (because the two symbols are 
independently chosen), and the resulting Huffman 
code on N2 “super-symbols” satisfies 

H(S) ≤ L ≤ H(S)+1 
    where L still denotes expected length per symbol  
    codeword. So now H(S) ≤ L ≤ H(S)+(1/2) 

•		 Extend to coding K at a time 
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Reduction


A 0.1 B  0.3  

B 0.3 D 0.3  

C 0.2 C 0.2  

D 0.3 A 0.1  

E 0.1 E 0.1 
 

0.3 0.4 0.6 

0.3 0.3 0.4 

0.2 0.3 

0.2 
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Trace-back


A 0.1A 0.1 BB  0.3 

B 0.3 D 0.3 

C 0.2 C 0.2 

D 0.3 A 0.1 

E 0.1 E 0.1 
 

0.3 0.4 0.60.3 0.4 0.60 

0.3 0.3 0.41 

0.2 0.3 

0.2 
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Trace-back  
A 0.1 B  0.3 

B 0.3 D 0.3 

C 0.2 C 0.2 

D 0.3 A 0.1 

E 0.1 E 0.1 

0.3 0.4 0.6 0 
1 

0.3 0.3 0.4 1 
0 0 

0.2 0.3 

0 1 
0.2 
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Trace-back 
A 0.1    B  0.3           0.3          0.4          0.6 0 
                                0 0          1 

B 0.3    D  0.3          0.3          0.3           0.4 1 
                                0 1          0 0 

C 0.2    C  0.2          0.2          0.3  

                                1 0          0 1 
D 0.3    A  0.1          0.2 

                                1 1 
E 0.1    E  0.1     
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Trace-back 
A 0.1    B  0.3           0.3          0.4          0.6 0 
            0 0               0 0          1 

B 0.3    D  0.3          0.3          0.3           0.4 1 
            0 1               0 1          0 0 

C 0.2    C  0.2          0.2          0.3  

            1 0               1 0          0 1 
D 0.3    A  0.1          0.2 

            1 1 0            1 1 
E 0.1    E  0.1 

            1 1 1     
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The Huffmann Code 
A 0.1    B  0.3           0.3          0.4          0.6 0 
            0 0    

B 0.3    D  0.3          0.3          0.3           0.4 1 
            0 1 

C 0.2    C  0.2          0.2          0.3  

            1 0  
D 0.3    A  0.1          0.2 

            1 1 0 
E 0.1    E  0.1     

            1 1 1 
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Example from last lecture 
p

choicei pi log2(1/pi) 
i � Huffman Expected 

log2(1/pi) encoding length 

A  1/3 1.58 bits 0.528 bits 10 0.667 bits 

B  1/2 1 bit 0.5 bits 0 0.5 bits 

C  1/12 3.58 bits 0.299 bits 110 0.25 bits 

D  1/12 3.58 bits 0.299 bits 111 0.25 bits 

1.626 bits 1.667 bits 

Entropy is 1.626 bits/symbol, expected length of Huffman  
encoding is 1.667 bits/symbol.   
 
How do we do better? 16 Pairs: 1.646 bits/sym 

64 Triples: 1.637 bits/sym 
256 Quads: 1.633 bits/sym 
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Another way to think about 
Entropy and Coding 

•  Consider a source S emitting one of symbols  
    s1, s2, …, sN at each time, with probabilities  

    p1, p2, …, pN respectively, independently of    
    symbols emitted at other times. This is an iid 

    source --- the emitted symbols are independent  

    and identically distributed 
•  In a very long string of K emissions, we expect to 

typically get Kp1, Kp2, …, KpN instances of the 
symbols s1, s2, …, sN respectively. (This is a very 
simplified statement of the “law of large numbers”.) 

•  A small detour to discuss the LLN  
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 The Law of Large Numbers
•  The expected or mean number of occurrences of 

symbol s1 in K independent repetitions is Kp1, 
where p1 is the probability of getting s1 in a single 
trial 

•  The standard deviation (std) around this mean is  
                           sqrt{Kp1(1-p1)} 

•  So the fractional one-std spread around around the 
mean is  

                           sqrt{(1-p1)/(Kp1)} 

    i.e., goes down as the square root of K.  
•  Hence for large K, the number of occurrences of s1 

is relatively tightly concentrated around the mean 
value of Kp1 
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Application 
•          Symbol source = American electorate           
           s1=“Obama”, s2=“Romney”,   p2 = 1-p1 

 
•  Poll K people, and suppose M say “Obama”.  

    Then reasonable estimate of p1 is M/K (i.e., we are   

    expecting M=Kp1). For this example, suppose  
    estimate of p1 is 0.55.  

•  The fractional one-std uncertainty in this estimate 
of p1 is approximately sqrt{0.45*0.55/K} (note: we 
are looking at concentration around p1, not Kp1) 

    For 1% uncertainty, we need to poll 2,475 people                                         
    (not anywhere near 230 million!)    
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Back to another way to think 
 about Entropy and Coding

•  In a very long string of K emissions, we expect to 
typically get Kp1, Kp2, …, KpN instances of the 
symbols s1, s2, …, sN respectively, and all ways of 
getting these are equally likely 

•  The probability of any one such typical string is  
              p1^(Kp1).p2^(Kp2)… pN^(KpN)  

    so the number of such strings is approximately 
    p1^(-Kp1).p2^(-Kp2)… pN^(-KpN). Taking the log2 of  

    this number, we get KH(S).  

•  So the number of such typical sequences is 2KH(S). 
It takes KH(S) binary digits to count this many 
sequences, so an average of H(S) binary digits per 
symbol to code the typical sequences. 
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 Some limitations
•  Symbol probabilities  

–  may not be known 

–  may change with time 

•  Source  
–  may not generate iid symbols, e.g., English text.  

Could still code symbol by symbol, but this won’t be  

efficient at exploiting the redundancy in the text.  

Assuming 27 symbols (lower-case letters and space), could 
use a fixed-length binary code with 5 binary digits (counts 
up to 25 = 32).  

Could do better with a variable-length code because even  

assuming equiprobable symbols,  

                      H =  log227 = 4.755 bits/symbol  
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 What is the Entropy of English?

Image in the public domain. Source: Wikipedia.

Taking account of actual individual symbol probabilities, 
but not using context, entropy = 4.177 bits per symbol 

http://commons.wikimedia.org/wiki/File:English_letter_frequency_%28frequency%29.svg
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In fact, English text has lots of 
 context

•  Write down the next letter (or next 3 letters!) in the 
snippet 

Nothing can be said to be certain, except death and ta_ 

     But x has a very low occurrence probability 
     (0.0017) in English words 

–  Letters are not independently generated! 

 
•  Shannon (1951) and others have found that the 

entropy of English text is a lot lower than 4.177 
–  Shannon estimated 0.6-1.3 bits/letter using human expts. 
–  More recent estimates: 1-1.5 bits/letter 
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What exactly is it we want to 
 determine?

•  Average per-symbol entropy over long sequences: 

        H = limK–>∞ H(S1,S2, S3, … ,SK)/K  
 

where Sj denotes the symbol in position j in the text. 
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Lempel-Ziv-W  elch (1977,’78,’84)
•  Universal lossless compression of sequential 

(streaming) data by adaptive variable-length coding 

•  Widely used, sometimes in combination with 
Huffman (gif, tiff, png, pdf, zip, gzip, …)   

•  Patents have expired --- much confusion and 
distress over the years around these and related 
patents 

•  Ziv was also (like Huffman) an MIT graduate 
student in the “golden years” of information theory, 
early 1950’s 

•  Theoretical performance: Under appropriate 
assumptions on the source, asymptotically attains 
the lower bound H on compression performance 
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Characteristics of LZW 
“Universal lossless compression of sequential 
(streaming) data by adaptive variable-length coding” 

–  Universal: doesn’t need to know source statistics in 
advance. Learns source characteristics in the course of 
building a dictionary for sequential strings of symbols 
encountered in the source text 

–  Compresses streaming text to sequence of dictionary 
addresses --- these are the codewords sent to the receiver  

–  Variable length source strings assigned to fixed length 
dictionary addresses (codes) 

–  Starting from an agreed core dictionary of symbols, 
receiver builds up a dictionary that mirrors the sender’s, 
with a one-step delay, and uses this to exactly recover the 
source text (lossless) 

–  Regular resetting of the dictionary when it gets too big 
allows adaptation to changing source characteristics  
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LZW: An Adaptive Variable-length 
Code 

• Algorithm first developed by Ziv and 0 0 

Lempel (LZ88, LZ78), later improved by 1 1 

Welch. 
2 2 

3 3 First 256 table 
• As message is processed, encoder 4 4 entries hold all 

builds a string table that maps … … the one-byte 

symbol sequences to an N-bit fixed- 252 252 strings (e.g., 

length code.  Table size = 2N 253 253 ASCII codes). 

• Transmit table indices, usually shorter 
254 254 

255 255 
than the corresponding string  

256 
compression! 257 

Remaining • Note: String table can be reconstructed 258 entries are 
by the decoder using information in the 259 filled with 

encoded stream – the table, while 260 sequences from 

central to the encoding and decoding 261 the message.  

process, is never transmitted! 
262 When full, 

… reinitialize 
N table… 2 -1 
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T  ry out LZW on
                        
 

          abcabcabcabcabcabcabc 

 

 
 

 
     (You need to go some distance out on this to  

     encounter the special case discussed later.) 
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LZW Encoding 
STRING = get input symbol 
WHILE there are still input symbols DO 
   SYMBOL = get input symbol 
   IF STRING + SYMBOL is in the STRINGTABLE THEN 
       STRING = STRING + SYMBOL 
   ELSE 
       output the code for STRING 
       add STRING + SYMBOL to STRINGTABLE 
       STRING = SYMBOL 
   END 
END 
 
output the code for STRING 

From http://marknelson.us/1989/10/01/lzw-data-compression/ L

                      S=string, c=symbol (character) of text 
1.  If S+c is in table, set S=S+c and read in next c. 
2.  When S+c isn’t in table: send code for S, add S+c to table. 
3.  Reinitialize S with c, back to step 1. 

Code © Dr. Dobb's Journal. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
http://marknelson.us/1989/10/01/lzw-data-compression/
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Example: Encode 
“abbbabbbab…” 
1.  Read a; string = a 
2.  Read b; ab not in table 

output 97, add ab to table, string = b 
3.  Read b; bb not in table 

output 98, add bb to table, string = b 
4.  Read b; bb in table, string = bb 
5.  Read a; bba not in table 

output 257, add bba to table, string = a 
6.  Read b, ab in table, string = ab 
7.  Read b, abb not in table 

output 256, add abb to table, string = b 
8.  Read b, bb in table, string = bb 
9.  Read a, bba in table, string = bba 
10. Read b, bbab not in table 

output 258, add bbab to table, string = b 
 

256 ab 

257 bb 

258 bba 

259 abb 

260 bbab 

261 

262 
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 Encoder Notes
•  The encoder algorithm is greedy – it’s designed to find the 

longest possible match in the string table before it makes a 
transmission. 

•  The string table is filled with sequences actually found in the 
message stream. No encodings are wasted on sequences not 
actually found in the input data. 

•  Note that in this example the amount of compression 
increases as the encoding progresses, i.e., more input bytes 
are consumed between transmissions. 

•  Eventually the table will fill and then be reinitialized, 
recycling the N-bit codes for new sequences. So the encoder 
will eventually adapt to changes in the probabilities of the 
symbols or symbol sequences. 
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LZW Decoding 
Read CODE 
STRING = TABLE[CODE] // translation table 
 
WHILE there are still codes to receive DO 
    Read CODE from encoder 
    IF CODE is not in the translation table THEN 
        ENTRY = STRING + STRING[0] 
    ELSE 
        ENTRY = get translation of CODE 
    END 
    output ENTRY 
    add STRING+ENTRY[0] to the translation table 
    STRING = ENTRY 
END 

(Ignoring special case in IF): 
1.  Translate received code to output the corresponding table 

entry E=e+R (e is first symbol of entry, R is rest) 
2.  Enter S+e in table. 
3.  Reinitialize S with E, back to step 1. 
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A special case:  cScSc
•  Suppose the string being examined at the source is cSc, where 

c is a specific character or symbol, S is an arbitrary (perhaps 
null) but specific string (i.e., all c and S here denote the same 
fixed symbol, resp. string).  

•  Suppose cS is in the source and receiver tables already, and 
cSc is new, then the algorithm outputs the address of cS, 
enters cSc in its table, and holds the symbol c in its string, 
anticipating the following input text.  

•  The receiver does what it needs to, and then holds the string 
cS in anticipation of the next transmission. All good. 

•  But if the next portion of input text is Scx, the new string at 
the source is cScx ---not in the table, so the algorithm outputs 
the address of cSc and makes a new entry for cScx. 

•  The receiver does not yet have cSc in its table, because it’s one 
step behind! However, it has the string cS, and can deduce 
that the latest table entry at the source must have its last 
symbol equal to its first. So it enters cSc in its table, and then 
decodes the most recently received address. 
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A   couple of concluding thoughts
•  LZW is a good example of compression or 

communication schemes that “transmit the 
model” (with auxiliary information to run the 
model), rather than “transmit the data” 

•  There’s a whole world of lossy compression! 
(Perhaps we’ll say a little later in the course.) 
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Pop Quiz 
 

 
Which of these (A, B, C) is a valid Huffman code tree? 

 

 

 

 
What is the expected length of the code in tree C above? 

X  
p=0.4 

Y  
p=0.3 

Z, 
p=0.3 

A. 

X, p=0.4 

Y, p=0.3 

Z, p=0.2 

B. 

Z

.3 

W, p=0.1 

X, p=0.4 

Y, p=0.2 

Z, p=0.3 

C. 

Z

.2 

W, p=0.1 
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