DIGITAL

COMMUNICATION

[
Wi,
VY

SYSTEMS

o @ o ra
=1 =1 =1 =1 o =1
o ——

=
=
=
)
(=]

6.02 Fall 2012
Lecture #1

* Digital vs. analog communication

* The birth of modern digital communication
* Information and entropy

* Codes, Huffman coding



Digital vs. Analog Communication

* ANALOG Communicating a continuous-time waveform
(e.g., voltage from a microphone), via amplitude modulation
(AM) or frequency modulation (FM) or ...

— Analog electronics
— Fidelity to the waveform

* DIGITAL Communicating a message comprising a discrete-
time sequence of symbols from some source alphabet

— Often coded onto some other sequence of symbols that’s adapted to
the communication channel, e.g., binary digits, 0 and 1.

— Often involving analog communication across the physical channel
— Fidelity to the message

— Well suited to riding the staggering growth in computational power,
storage, big data, ...



6.02 Syllabus

Point-to-point communication channels (transmitter—receiver):
 Encoding information BITS

 Models of communication channels SIGNALS

 Noise, bit errors, error correction

 Sharing a channel

Multi-hop networks:
« Packet switching, efficient routing PACKETS
* Reliable delivery on top of a best-efforts network



Samuel F.B. Morse

Invented (1832 onwards, patent #1,647 in 1840) the most practical form
of electrical telegraphy, including keys, wire arrangements,
electromagnets, marking devices, relays, ..., and Morse code!

Worked tirelessly to establish the technology

After initial struggles, telegraphy was quickly adopted and widely
deployed
— Trans-Atlantic cable attempts 1857 (16 hours to send 98 words from Queen

Victoria to President Buchanan!), 1858, 1865, finally success in 1866 (8 words/
minute)

— Trans-continental US in 1861 (effectively ended the Pony Express)
— Trans-Pacific 1902

Telegraphy transformed communication (trans-Atlantic time from 10 days
by ship to minutes by telegraph) and commerce, also spurred major
developments in EE theory & practice (Henry, Kelvin, Heaviside, Pupin, ...)



Fast-forward 100 years

* Via
— Telephone (“Improvement in Telegraphy”, patent #
174,456, Bell 1876)
— Wireless telegraphy (Marconi 1901)
— AM radio (Fessenden 1906)
— FM radio (Armstrong 1933)

— Television broadcasting by the BBC (1936)

* Bell Labs galaxy of researchers
— Nyquist, Bode, Hartley, ...



Claude E. Shannon, 1916-2001

1937 Masters thesis, EE Dept, MIT

A symbolic analysis of relay and switching
circuits

Introduced application of Boolean

algebra to logic circuits, and vice versa.

Very influential in digital circuit design.

“Most important Masters thesis of the century”

1940 PhD, Math Dept, MIT

An algebra for theoretical genetics

To analyze the dynamics of Mendelian _ |
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MIT faculty
1956-1978

Joined Bell Labs in 1940.

“A mathematical theory of cryptography” 1945/1949
“A mathematical theory of communication” 1948
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A probabilistic theory requires at least a one-slide
checklist on Probabilistic Models!

* Universe U of elementary outcomes s, s,, ..., Sy, ... - One and only one
outcome in each experiment or run of the model.

 Events A, B, C, ... are subsets of outcomes. We say event A has occurred if the
outcome of the experiment lies in A.

* Events form an “algebra” of sets, i.e., A or B (union, also written A+B) is an
event, A and B (intersection, also written AB) is an event, not A (complement,
also written A¢) is an event. So U and the null set 0 are also events.

* Probabilities are defined on events, such that 0 < P(A) <1, P(U)=1, and
P(A+B)=P(A)+P(B) if A and B are mutually exclusive, i.e. if AB=0. More
generally, P(A+B)=P(A)+P(B)-P(AB).

* Events A, B, C, D, E, etc., are said to be (mutually) independent if joint
probability of every combination of these events factors into product of
individual probabilities, so P(ABCDE)=P(A)P(B)P(C)P(D)P(E), P(ABCD)=P(A)P
(B)P(C)P(D), P(ADE)=P(A)P(D)P(E), etc.

* Conditional probability P(A, given that B has occurred) = P(A|B) = P(AB)/P(B).

* Expected value of a random variable is the probability-weighted average.



Measuring Information

Shannon’s (and Hartley’s) definition of the information obtained on
being told the outcome s, of a probabilistic experiment § :

I(S=Si)=10g2( 1 )

ps(s;)
where p.(s,) is the probability of the event § =y,

The unit of measurement (when the log is base-2) is the bit
(binary information unit --- not the same as binary digit!).

1 bit of information corresponds to

Ps(s.)=0.5. So, for example, when the

outcome of a fair coin toss is revealed to
)Q us, we have received 1 bit of information.

| “Information is the
resolution of uncertainty”

Image by MIT OpenCourseWare. ShannOn



Examples

We’re drawing cards at random from a standard N=52-card
deck. Elementary outcome: card that’s drawn, probability 1/52,
information log,(52/1) = 5.7 bits.

For an event comprising M such (mutually exclusive) outcomes,
the probability is M/ 32.

Q. If I tell you the card is a spade &, how many bits of
information have you received?

A. Out of N=52 equally probable cards, M=13 are spades &, so
probability of drawing a spade is 13/52, and the amount of
information received is log,(52/13) = 2 bits.

This makes sense, we can encode one of the 4 (equally probable)
suits using 2 binary digits, e.g., 00=0, 01=0, 10=&, 11=0.

Q. If instead I tell you the card is a seven, how much info?
A. N=52, M=4, so info = log,(52/4) = log,(13) = 3.7 bits



Properties of Information definition

* Alower-probability outcome yields higher information

* A highly informative outcome does not necessarily mean a
more valuable outcome, only a more surprising outcome, i.e.,

there’s no intrinsic value being assessed (can think of
information as degree of surprise)

e Often used fact: The information in independent events is
additive. (Caution: though independence is sufficient for

additivity, it is not necessary, because we can have P(ABC)=P
(A)P(B)P(C) even when A,B,C are not independent ---

independence requires the pairwise joint probabilities to also
factor.)



Expected Information as
Uncertainty or Entropy

Consider a discrete random variable S, which may represent
the set of possible symbols to be transmitted at a particular
time, taking possible values s,,S,,...,5, , with respective

probabilities p(s,), Pg(8,)s..c, Ps(Sy) -

The entropy H(S) of § is the expected (or mean or average)
value of the information obtained by learning the outcome of §':

N N 1
H(S) = g\; I(S = ,-) — S( 1)1 2
(S) Ep (s)I(S =s Ep s;)log (m(s»)

When all the p.(s;) are equal (with value 1/N ), then
H(S)=1log, N or N =2"®

This is the maximum attainable value!



e.g., Binary entropy function A4(p)

 1P)
1.0
Heads (or C=1) with
probability p
Tails (or C=0) with 0.5 7T
probability 1-p
0 +
o) 0.5



Connection to (Binary) Coding

Suppose p=1/1024, i.e., very small probability of getting a
Head, typically one Head in 1024 trials. Then

h(p)=(1/1024)log,(1024 /1) +(1023/1024)log,(1024 /1023)

= (112 bits of uncertainty or information per trial
on average

So using 1024 binary digits (C=0 or 1) to code the results of
1024 tosses of this particular coin seems inordinately
wasteful, i.e., 1 binary digit per trial. Can we get closer to an
average of .0112 binary digits/trial?

Yes! Confusingly, a binary digit
1s also referred to as a bit!

Binary coding: Mapping source symbols to binary digits



Significance of Entropy

Entropy (in bits) tells us the average amount of information (in
bits) that must be delivered in order to resolve the uncertainty
about the outcome of a trial. This is a lower bound on the
number of binary digits that must, on the average, be used to
encode our messages.

If we send fewer binary digits on average, the receiver will have
some uncertainty about the outcome described by the message.

If we send more binary digits on average, we’re wasting the
capacity of the communications channel by sending binary
digits we don’t have to.

Achieving the entropy lower bound is the “gold standard” for an
encoding (at least from the viewpoint of information
compression).



Fixed-length Encodings

An obvious choice for encoding equally probable outcomes
is to choose a fixed-length code that has enough sequences
to encode the necessary information

* 96 printing characters — 7-"bit” ASCII
* Unicode characters — UTF-16
10 decimal digits — 4-"bit” BCD (binary coded decimal)

Fixed-length codes have some advantages:

 They are “random access” in the sense that to decode
the nt® message symbol one can decode the ntt fixed-
length sequence without decoding sequence 1 through
n-1.

« Table lookup suffices for encoding and decoding



Now consider:

choice; D; log,(1/p;)
“p” 1/3 | 1.58 bits
“B” 1/2 1 bit
“c” 1/12 | 3.58 bits
“n” 1/12 | 3.58 bits

The expected information content in a choice is given by the
entropy:
= (.333)(1.58) + (.5)(1) + (2)(.083)(3.58) = 1.626 bits

Can we find an encoding where transmitting 1000 choices
requires 1626 binary digits on the average?

The “natural” fixed-length encoding uses two binary digits for
each choice, so transmitting the results of 1000 choices requires
2000 binary digits.



Variable-length encodings

(David Huffman, in term paper for MIT graduate class, 1951)

Use shorter bit sequences for high probability choices,
longer sequences for less probable choices

BC A BA D

011010010111

choice; )2 encoding
“A” 1/3 10
“B” 1/2 o)
“C” 1/12 110
“D” 1/12 111

Huffman Decoding Tree

Expected length
=(.333)(2)+(.5)(1)+(2)(.083)(3)
= 1.666 bits

Transmitting 1000
choices takes an
average of 1666 bits...
better but not optimal

Note: The symbols are at the leaves of the tree;
necessary and sufficient for instantaneously decodability.



Huffman’s Coding Algorithm

Begin with the set S of symbols to be encoded as binary strings,
together with the probability p(s) for each symbol s in S.

Repeat the following steps until there is only 1 symbol left in S:

— Choose the two members of S having lowest probabilities.
Choose arbitrarily to resolve ties.

— Remove the selected symbols from S, and create a new node of
the decoding tree whose children (sub-nodes) are the symbols
you've removed. Label the left branch with a “0”, and the right
branch with a “1”.

— Add to S a new symbol that represents this new node. Assign
this new symbol a probability equal to the sum of the
probabilities of the two nodes it replaces.



Huffman Coding Example
Initially S = { (A, 1/3) (B, 1/2) (C, 1/12) (D, 1/12)}

. . . CD
First iteration W
— Symbols in S with lowest probabilities: C and D é 5
— Create new node
CD
1
0
C

— Add new symbolto S={(A, 1/3) (B, 1/2) (CD, 1/6)} A

Second iteration %\
— Symbols in S with lowest probabilities: A and CD A S

— Create new node D

— Add new symbol to S = { (B, 1/2) (ACD, 1/2)} 0N

0 1
Third iteration B y>\
— Symbols in S with lowest probabilities: B and ACD A 9 1
C D

— Create new node
— Add new symbol to S = { (BACD, 1) }

Done



Another Variable-length Code (not!)

Here’s an alternative variable-length for the example on the
previous page:

Letter Encoding
A 0
B 1
C 00
D 01

Why isn’t this a workable code?
The expected length of an encoded message is
(.333+.5)(1) + (.083 + .083)(2) = 1.22 bits

which even beats the entropy bound ©



Huffman Codes - the final word?

Given static symbol probabilities, the Huffman algorithm creates
an optimal encoding when each symbol is encoded separately.
(optimal = no other encoding will have a shorter expected
message length). It can be proved that

expected length L satisfies H < L < H+1

Huffman codes have the biggest impact on average message
length when some symbols are substantially more likely than
other symbols.

You can improve the results by adding encodings for symbol
pairs, triples, quads, etc. From example code:

Pairs: 1.646 bits/sym, Triples: 1.637, Quads 1.633, ...

But the number of possible encodings quickly becomes
intractable.

Symbol probabilities change message-to-message, or even within
a single message. Can we do adaptive variable-length encoding?
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