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Name:
 

DEPARTMENT OF EECS
 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 

6.02: Digital Communication Systems, Fall 2012 

Quiz II
 
November 13, 2012 

“×” your section Section Time Recitation Instructor TA 

D 1 10-11 Victor Zue Ruben Madrigal 
D 2 11-12 Victor Zue Cassandra Xia 
D 3 12-1 Jacob White Kyu Seob Kim 
D 4 1-2 Yury Polyanskiy Shao-Lun Huang 
D 5 2-3 Yury Polyanskiy Rui Hu 
D 6 3-4 Jacob White Eduardo Sverdlin Lisker 

Please read and follow these instructions: 
0. Please write your name in the space above and × your section. 
1. Two two-sided “crib sheets” and a calculator are allowed. No other aids. 
2. There are 27 questions (mostly short!) in VI sections, and 17 pages in this quiz booklet. 
3. Your total allotted time is 120 minutes. 
4.	 Please write legibly. Explain your answers, not just when we explicitly ask you to! If 

you find a question ambiguous, write down your assumptions. Show your work for partial 
credit. 

5. Use the empty sides of this booklet if you need scratch space. If you use the blank sides for 
answers, make sure to say so! 

PLEASE NOTE: SOME STUDENTS WILL TAKE A MAKE-UP QUIZ LATER THAN
 
YOU. PLEASE DON’T DISCUSS THIS QUIZ WITH ANYONE IN THE CLASS,
 

UNLESS YOU’RE SURE THEY HAVE TAKEN IT WITH YOU TODAY.
 

Do not write in the boxes below
 

1-6(*/19) 7-10 (*/19) 11-17 (*/25) 18-21 (*/13) 22-24 (*/12) 25-27 (*/12) Total (*/100) 
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Bring in The Noise 
A particular digital communication scheme sends signals over a channel that behaves essentially as a linear, 
time-invariant (LTI) system at baseband. The binary source at the transmitter generates the symbols “0” and 
“1” with equal probability. The characteristics of the channel and the timing at the receiver are such that the 
receiver is able to obtain M ≥ 1 good samples in each bit slot. The good samples in a bit slot corresponding 
to a “0” are all of the form 

y[n] = V0 + w[n] 

while in a bit slot corresponding to a “1” they are all of the form 

y[n] = V1 + w[n] . 

Here w[n] denotes a noise term that is a Gaussian random variable of mean 0 and variance σ2, and is 
independent across samples, i.e., the samples at the receiver are perturbed by additive white Gaussian noise. 

For on-off signaling, V0 = 0 and V1 = V . The linearity of the channel then ensures that for bipolar signaling 
V0 = −V and V1 = V . 

The receiver decides on whether a “0” or “1” was sent by comparing the average value of the M samples in 
any bit slot with a threshold voltage Vth. If the average is below Vth, the receiver decides a “0” was sent; if 
the average is above Vth, the receiver decides a “1” was sent. 

Suppose we are using bipolar signaling and M = 1, i.e., only a single sample is taken in each bit slot. 
Then you’ve seen that the probability of the receiver making an error in deciding whether a “0” or “1” was 
sent in any particular bit slot, i.e., the bit error rate (BER), is minimized by choosing Vth = 0, with the 
corresponding BER being given by   V 

BERbipol = 0.5 erfc √ . 
σ 2

1. [2 points]: If V is doubled from its original value, by what maximum factor can the noise 
variance σ2 be increased without exceeding the original BER? 

Noise variance can be increased by a factor of : 

2. [4 points]: If V is kept the same as originally, but M is increased to 4, by what maximum factor 
can the noise variance σ2 be increased without increasing the original BER? Explain your answer! 

Noise variance can be increased by a factor of :
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Suppose the transmitter now converts to on-off signaling, perhaps to save on the average power transmitted, 
and thereby extend its battery life. Some indication of the average power at the transmitter can be obtained 
by computing the average value that (y[n])2 would have across all the received good samples in the absence 
of noise. By this measure it follows that, for a given V , on-off signaling uses half the average power at the 
transmitter as bipolar signaling, when “0” and “1” are equally likely. 

You can assume the receiver is properly converted for optimal (i.e, minimum BER) detection of on-off 
signaling by now using a threshold Vth = V/2. 

3. [4 points]: For M = 1, what is the corresponding BER now? (You need not derive your answer 
in detail; it will suffice to explain what modifications you need to make to the earlier BERbipol 

expression, and why.) 

BERonoff = 

4. [4 points]: For a given M and noise variance, by what factor does V in on-off signaling have to 
be increased in order to get a BER that matches the case of bipolar signaling under the original V ? 

V must be increased by a factor of : 

5. [2 points]: If V for on-off signaling is increased by the factor you determined in the preceding 
problem, by what factor does the average power at the transmitter increase? 

Average power at the transmitter increases by :
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6. [3 points]: Suppose (for either bipolar or on-off signaling) the probability of a “1” being sent 
becomes greater than the probability of a “0” being sent. Will Vth have to be increased, decreased, 
or left unchanged from its previous value for optimum performance, i.e., minimum BER? Circle the 
correct answer, and explain! 

Vth will have to be Increased / Decreased / Unchanged 
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II Signals and Systems 

Consider the signal x[n] given by 
x[n] = cos(2π 

n 
3 
) 

for all n. A segment of the signal, for n in the interval [−3, 3], is shown below. (Note that cos(2π ) = −0.5.)3 

Figure 1: Input signal x[n]. 

7. [3 points]: What is the angular frequency Ω0, in radians/sample, of this sinusoidal signal x[n]? 
And what is its period? 

Ω0 = Period = 

Suppose the above sinusoidal signal x[n] is used as the input to an LTI system whose unit sample response 
is 

h[n] = δ[n] − δ[n − 1] + δ[n − 2] , 

where δ[n] as usual denotes the unit sample function. A plot of h[n] for n in [−3, 3] is shown on the next 
page. 



6.02 Fall 2012, Quiz 2 Page 6 of 17
 

Figure 2: Unit sample response h[n] of LTI system. 

8. [6 points]: Determine the output y[n] of the system for n = 0, 1, 2, showing your computations 
explicitly. 

y[0] = , y[1] = , y[2] = 

Now suppose instead that we use a sinusoidal input that has half the frequency of the preceding case. This 
input, which we’ll denote by x/[n], is given for all n by the expression 

n 
x/[n] = cos(π )

3 

and is plotted on the next page for n in [−3, 3]. (Note that cos(π ) = 0.5.)3 
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Figure 3: New input signal x/[n]. 

This input is applied to the same system as before, namely the one with unit sample response 

h[n] = δ[n] − δ[n − 1] + δ[n − 2] . 

9. [6 points]: Determine the output y/[n] of the system for this new input, for n = 0, 1, 2, 3, 4, 5. 
You only need show your computations for the first three of these values. 

y/[0] = , y/[1] = , y/[2] = 

y/[3] = , y/[4] = , y/[5] = 
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Staying with the LTI system we have been considering, whose unit sample response is 

h[·] = δ[n] − δ[n − 1] + δ[n − 2] , 

suppose some input signal xc[n] to this system produces an output of 0 for all time. In other words, 

(h ∗ xc)[n] = 0 

for all n. Consider now the composite system shown below, where the first subsystem is a stable LTI 
system with some unknown unit sample response h1[·], and the second subsystem is the one we have been 
considering. 

    h1[.]     h[.] 
xc[n]  yc[n]  

Figure 4: Composite system. 

10. [4 points]: What is the output yc[·] of the composite system? It is essential that you explain 
your reasoning here. 
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III Frequently 
We stick with the LTI system introduced in the previous section, namely the system with unit sample re­
sponse h[n] = δ[n] − δ[n − 1] + δ[n − 2] . 

11. [3 points]: Write down an explicit expression for the frequency response 

∞0 
−jΩmH(Ω) = h[m]e 

m=−∞ 

of the particular LTI system specified above. 

H(Ω) = 

12. [6 points]: Rewrite your answer from the previous part in the form 

jα(Ω)H(Ω) = A(Ω)e , 

where α(Ω) and A(Ω) are real functions of Ω. [We don’t insist that A(Ω) be nonnegative, so A(Ω) 
need not be the magnitude of H(Ω).] 

A(Ω) = , α(Ω) =
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13. [4 points]: Evaluate A(Ω) and α(Ω) explicitly for Ω = π and for Ω = 2π 
33 .
 

2πα( 3

A(π α(π 
3

2πA(

14. [4 points]: Provide a careful and fully labeled sketch of A(Ω) below, for Ω in the interval 
[−π, π]. 

3

3 ) =
 ) =
 ,
 

) =
 ) =
 ,
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15. [3 points]: Suppose the input to the system is x//[n] = cos(2π n + θ0) . Write down an explicit 3 
//[n].expression for the corresponding output y

y//[n] = 

///[n]16. [3 points]: Suppose the input to the system is now x = cos(π n + θ0) . Write down an 3 
///[n].explicit expression for the corresponding output y

y///[n] = 

17. [2 points]: For the special case of θ0 = 0 in the preceding two problems, show that you recover 
the results you obtained in the last section (Problems 8 and 9). If you don’t, then you have some 
checking (or explaining!) to do. 
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IV Spectre in the Mirror 

Given a real signal x[·] with DTFT 

∞

X(Ω) = x[m]e 
0 

m=−∞ 

−jΩm j∠X(Ω)= |X(Ω)|e ,
 

let v[·] denote the signal obtained by time-reversing x[·], so v[n] = x[−n]. 

18. [4 points]: Let V (Ω) denote the DTFT of v[·]. Which of the following equations correctly shows 
how to obtain V (Ω) from X(Ω)? Note, incidentally, that X(−Ω) = X∗(Ω), where the latter quantity 
is the complex conjugate of X(Ω). (Circle the correct answer, and explain your reasoning.) 

• V (Ω) = X(Ω) 

• V (Ω) = 1/X(Ω) 

• V (Ω) = 1/X(−Ω) 

• V (Ω) = X(−Ω) 

• V (Ω) = −X(Ω) 

Define the signal r[·] as the convolution of x[·] and v[·], so r[n] = (x ∗ v)[n]. More explicitly, 

00∞ ∞

r[n] = x[m]v[n − m] = x[m]x[m − n] . (1) 
m=−∞ m=−∞ 

The signal r[·] is called the autocorrelation function of x[·], and r[n] is called the autocorrelation at lag n. 

19. [4 points]: Denote the DTFT of r[·] by R(Ω). Write down an expression that shows how to 
obtain R(Ω) from X(Ω); the result of the previous problem is likely to be helpful. If you’ve done 
things correctly, you should find that R(Ω) is entirely determined by the magnitude of X(Ω). Please 
write your answer in terms of |X(Ω)|. 

In terms of |X(Ω)| we can write R(Ω) =
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20. [3 points]: State whether each of the following statements is True or False, with a very short 
explanation in each case. 

– R(Ω) is real. True / False 

– R(Ω) is an even function of Ω. True / False 

– R(Ω) is nonnegative at all Ω. True / False 

We know from the inverse DTFT that 

r[n] = 
1 

 π 

R(Ω)ejΩndΩ ,
2π −π 

from which  π1 
r[0] = R(Ω) dΩ . 

2π −π 

21. [2 points]: In the latter equation, express r[0] in terms of x[·] using Eq. (1), and express R(Ω) 
in terms of |X(Ω)| using the result of Problem 19. Write down the resulting equation; this equality is 
known as Parseval’s theorem for a discrete-time signal. 

Parseval’s theorem: 

(From what you’ve proved above, the following chain of reasoning is justified:   π   1  |r[n]| =  R(Ω)ejΩndΩ 
2π −π π1 ≤ |R(Ω)ejΩn|dΩ 
2π −π π1 

= |R(Ω)| dΩ 
2π −π π1 

= R(Ω) dΩ 
2π −π 

= r[0] . 

This establishes that the autocorrelation function has its maximum magnitude when the lag is 0. You’ve 
used similar ideas for preamble detection.) 
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V Q to the Rescue 

James Bond at the casino in Macau wants urgently to send to MI6 in London a signal x[n] that is 0 for 
n < 0 and whose values for n ≥ 0 contain vital information. To prevent the casino from snooping, Mr. 
Bond decides to instead transmit the DTFT X(Ω) of this signal (actually samples of the DTFT at points in 
the interval [−π, π], computed using his Furiously Fast Transformer, but we shall assume these samples are 
so close together that he’s effectively transmitting the DTFT itself). Unfortunately, what gets transmitted 
is just the real part of X(Ω). We’ll lead you through how the Q Branch wizards at MI6 (some of whom 
are reported to have studied at MIT on the Cambridge-MIT Exchange) reconstructed x[n] from just this 
information, and using the knowledge that x[n] = 0 for n < 0. 

Any signal x[n] can be written as the sum of two terms: 

x[n] + x[−n] x[n] − x[−n] 
x[n] = , 2  J 

+ , 2  J 
. 

x1[n] x2[n] 

As indicated above, we shall call the first term x1[n] and the second term x2[n]. 

22. [4 points]: Either x1[n] or x2[n] is an even function of time, and the other is an odd function of 
time. Which is which? Circle the correct answer below and show your reasoning. (Recall that f [n] is 
called an even function if f [−n] = f [n]; it is called an odd function if f [−n] = −f [n].) 

x1[n] is Odd / Even x2[n] is Odd / Even 

The above decomposition is unique (we don’t ask you to show that, though it’s not hard) — i.e., there is no 
other decomposition of an arbitrary signal into the sum of an even part and an odd part. 

23. [4 points]: Denote the DTFTs of the above signals x1[n] and x2[n] by X1(Ω) and X2(Ω) 
respectively. One of these DTFTs is purely real and the other one is purely imaginary. Which is 
which? Circle the correct answer and show your reasoning. 

X1(Ω) is Real / Imaginary X2(Ω) is Real / Imaginary 
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It follows from the answers to the previous two problems that the real part of X(Ω) equals either X1(Ω) or 
X2(Ω) — you will know which from your answers above. Thus the Q Branch wizards can inverse transform 
what the casino sent them, to obtain either x1[n] or x2[n] — you will know which from your earlier answers. 

24. [4 points]: How can you recover x[n] from either x1[n] alone or x2[n] alone, using the fact that 
x[n] is 0 for n < 0? 

The general lesson here is that a one-sided signal (i.e., a signal that is identically zero for all n less than 
some n0, or for all n greater than some n0) is uniquely determined by just the real part (or equivalently, by 
just the imaginary part) of its DTFT. 
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VI Bring Me the Messenger 

[Although this problem is phrased in continuous-time, it should be quite straightforward for you to do on 
the basis of the fundamentals you’ve learned in the setting of DT modulation/demodulation. If it helps you, 
you could think instead in terms of DT samples of the signals here, taken at some sampling rate fs kHz, 
and then map each frequency f given here in kHz to a frequency of Ω = 2πf/fs radians/sample. However, 
that’s much more complication than is needed for this fairly simple and straightforward problem!] 

RF  filter  and  
amplifier

IF  band-­‐pass  filter  
and  amplifier  for  

kHz

Audio  detector  and  
amplifier

(adjustable)

Antenna

Speaker

Figure 5: Structure of a typical radio receiver. 

Practical radio receivers typically use several stages in their demodulation process, in order to manage 
various design tradeoffs. The baseband signal in AM is allowed to carry frequencies in the range of −5 
kHz to 5 kHz, which is adequate for music and speech. To tune in an AM broadcast station operating at 
a carrier frequency of fc kHz, we would like to select from the “radio frequency” (RF) signal picked up 
by the antenna only those frequencies in the ranges fc ± 5 kHz and −fc ± 5 kHz, as no other parts of the 
received signal are relevant. This would require building a very good bandpass filter for the antenna signal 
to go through, but the pass band of the filter would have to be shifted around in frequency as we tuned from 
one station to another — and this turns out to be tricky to do in hardware for a good bandpass filter. 

Instead, what’s done is to build an excellent bandpass filter whose passband is centered on a fixed pair of 
frequencies ±fI , referred to as the intermediate frequency or IF. For AM radio, the standard IF frequency 
is fI = 455 kHz. This filter passes frequencies in the range fI ± 5 kHz and −fI ± 5 kHz, and effectively 
block out other frequencies. It can also include the amplification necessary to raise the signal level from the 
microvolts at the antenna to the higher levels needed to drive downstream electronics. 

To move the desired radio station’s signal into the passband of the IF filter/amplifier, we use the hetero­
dyning idea that we’ve seen several times, i.e., multiply the signal at the antenna by a sinusoidal signal of 
appropriate frequency, fo kHz. (In AM radio jargon, this multiplication is called mixing.) To tune in differ­
ent stations, we just change the frequency of this sinusoidal signal, which is easy to do using a controllable 
oscillator. The common practice is to pick fo > fc; this is referred to as super-heterodyning. 

25. [4 points]: Multiplying a carrier signal at fc kHz with a receiver oscillator signal at fo kHz 
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produces a signal that is a sum of sinusoids. What are the frequencies of these sinusoids? 

The sinusoids are at the following frequencies (in kHz): 

26. [4 points]: What frequency fo (in kHz, and with fo > fc) should the receiver’s oscillator be set 
at in order to translate the signal received from an AM station operating at a carrier frequency of 580 
kHz (which happens to be WTAG Worcester, in this area) into the passband of the IF filter/amplifier 
at 455 kHz? Explain! 

27. [4 points]: With fo set as in the preceding problem, there is actually another AM station, 
at a carrier frequency f / > fo, that will also find its signal translated into the passband of the IF c 
filter/amplifier. What is f /?c

f / = c 

(This f / is referred to as the image frequency of fc, and the way to prevent it interfering with the desired c 
signal centered on fc is to do some filtering at the antenna itself, in the RF stage. Also, the FCC is careful 
not to assign the carrier frequencies fc and f / to nearby stations.) c 

The output from the IF filter/amplifier can now be demodulated in the standard ways, for instance using an 
averaging filter if the modulating signal is always nonnegative, otherwise using a further stage of mixing in 
which the signal is multiplied by a sinusoid at the IF frequency. But that’s a story for another day. 
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