
Problem Wk.12.2.3: Localization


Earlier (in Wk.11.1.7) you considered how to compute the ideal sonar readings for a 
world. Please refer to that problem for a reminder about the set-up of a robot moving 
along a hallway and using a single side sonar to estimate its position in the hallway. 
Now we will look at the overall structure of the localization system. After you familiarize 
yourself with the structure, we'll ask you to hand simulate a simple case. 

Here is the architecture of the system: 

The key modules in the system are: 

Preprocessor: This state machine takes, as input, instances of io.SensorInput
and generates as output pairs of (observation, action), suitable for input to the 
state estimator. 
Estimator: This state machine is an instance of seGraphics.StateEstimator, which 
is, essentially, the state estimator you implemented previously. 
Driver: This state machine is an instance of the move.MoveToFixedPose class. It can 
be used to move the robot forward in a straight line. 

Here is a description of the key parameters for the system (with the values we'll use in 
this tutor problem): 

numObservations = 10: a positive integer describing the number of discrete values 
we will divide the sonar range into. We will assume that sonar readings are in the 
range 0.0 to sonarMax which is the maximum reliable sonar readings. 
numStates = 10: a positive integer describing the number of discrete values we will 
divide the robot's possible x coordinate into. We will assume that robot's x position 
are in the range xMin to xMax. 
xMin = 0.0: the smallest possible x coordinate of the robot in the world (in 
meters). 
xMax = 10.0: the largest possible x coordinate of the robot in the world (in meters) 
y = 0.5: a fixed y coordinate of the robot in the world (in meters). 
sonarMax = 1.5: the maximum sonar reading (in meters). 

We are interested in estimating the robot's x coordinate, based on its sequence of 
observations and actions. So, we will treat the state space in the same way as the 
observations, and divide the robot's possible range of x coordinates into numStates fixed 
intervals, and let the state of the robot be the index of the interval into which its true x 
coordinate falls. Let w be the 'width' of the intervals in x space that constitute states. 

Preprocessor 

The preprocessor is a state machine with these inputs and outputs: 

Input: Instance of io.SensorInput. 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.SM-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.SensorInput-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/seGraphics.StateEstimator-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/move.MoveToFixedPose-class.html


Output: Pair of (obs, act), each of which is an integer index. obs is the index of a 
discrete sonar reading and act is the index of a discrete motion. 

To make this problem fit into our state estimation framework, we will discretize the 
sensor readings by dividing the range of possible sonar values into numObservations 
fixed-length intervals, and encoding the value as the index of the interval into which it 
falls. 

Because we would like our state estimator to run in parallel with, but not depend 
directly on, another machine that is controlling the robot's actions, we will infer an 
'action' based on observing the robot's odometry. Recall that the odometry readings 
are relative to the arbitrary location where the robot started in the world (which we 
don't know). So, the odometry is only good for estimating relative displacements. 

Let xt be the robot's observed x coordinate at time t. We will say that the 'action' that 
the robot took at time t-1 is xt - xt-1. We need to discretize the action space, so we will 
actually report the action as a rounded number of intervals: it is int(round((xt - xt-1) / 
w)), where w is the width of a state interval interval (that is, the range of possible x 
coordinates divided by the number of discrete states). 

Because our state estimation process incorporates an observation and then the 
subsequent transition, it is crucial that the preprocessor output an observation 
from step t-1 and the action that took place between steps t-1 and t. 

When the state machine is first started there will not be any previous observation or 
odometry available, so we will simply generate an output of None. We will make a special 
modification in our state estimator, so that if the input to the machine is None, then no 
state update will be made at all. 

Estimator 

The Estimator is an instance of a state machine that acts as a state estimator; its inputs 
and outputs are: 

Input: Either None or a pair of (obs, act), each of which is an integer index. obs is 
the index of a discretized sonar reading at time t and act is the index of a 
discretized motion started at time t. 
Output: Belief state, represented as a dist.DDist over possible discrete x 
locations of the robot in the world. If the input is None, then the output belief state 
is the same as the belief state from the previous time step (or the initial state, if 
this is the first time step). 

To make the estimator state machine, it's necessary to construct a ssm.StochasticSM 
that contains the initial distribution, and transition and observation models for the 
localization problem. We can let the starting distribution be uniform. 

The starting state of the state estimator is just the initial belief state of the SSM. And to 
get the next values, we do a step of Bayes evidence with the observation and an 
application of the law of total probability with the observation. 

class StateEstimator(sm.SM):
def __init__(self, model):

self.model = model
 self.startState = model.startDistribution

 def getNextValues(self, state, inp):

if inp == None: return (state, state)


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/ssm.StochasticSM-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html


 (o, i) = inp
sGo = dist.bayesEvidence(state, self.model.observationDistribution, o)
dSPrime = dist.totalProbability(sGo,

self.model.transitionDistribution(i))
return (dSPrime, dSPrime) 

Observation model 

Remember that the observation model is a conditional distribution, that is, a procedure 
that takes a state as input and returns a distribution over possible observations. The 
state will be one of our discrete state indices. 

In this problem, assume a perfect observation model, that is, in each state, the sonar 
returns the discretized ideal reading for the state (you wrote code to compute these 
readings in the previous problem). 

Transition model 

Similarly, the transition model is a procedure that takes an action as input and returns a 
procedure; that procedure takes a starting state as input, and returns a distribution 
over resulting states. 

Assume a perfect transition model, that is, given an action Δ (an integer), and a state s 
(also an integer), the resulting state is s + Δ but clipped to stay within the legal range 
of 0 ≤ s < numStates. 

REMINDER: Because our state estimation process incorporates an observation and 
then the subsequent transition, it is crucial that the preprocessor output an 
observation from step t-1 and the action that took place between steps t-1 
and t. 

In this problem, we will assume that the ideal (discretized) sonar readings for each 
state are: 

ideal = ( 5, 1, 1, 5, 1, 1, 1, 5, 1, 5 ) 

Fill in the output values for the Preprocessor and Estimator state machines for the first 
three time steps below. For non-zero probabilities, please enter 3 digits after the 
decimal (enter decimal values or fractions). 

If the output of the Preprocessor is None, enter None in both boxes here; but 
when you implement this state machine in design lab 13, your machine 
should output a single None. 

1. Preprocessor (at time 0): 

Input: an instance of io.SensorInput:

sonars = (0.8, 1.0, ...)


odometry = Pose(1.0, 0.5, 0.0)


Output: a tuple (obs, act); if the output is None, enter None in both boxes. 
obs = 
act = 

2. Preprocessor (at time 1): 

Input: an instance of io.SensorInput: 
sonars = (0.25, 1.2, ...) 

odometry = Pose(2.4, 0.5, 0.0) 



Output: a tuple (obs, act); if the output is None, enter None in both boxes. 
obs = 

act = 


3. Preprocessor (at time 2): 

Input: an instance of io.SensorInput:

sonars = (0.16, 0.2, ...)


odometry = Pose(7.3, 0.5, 0.0)


Output: a tuple (obs, act); if the output is None, enter None in both boxes. 
obs = 

act = 


4. Estimator (at time 0): 

Input: (obs, act) the output tuple from Preprocessor 
Output: probability distribution over robot states (x indices) 

5. Estimator (at time 1): 

Input: (obs, act) the output tuple from Preprocessor 
Output: probability distribution over robot states (x indices) 

6. Estimator (at time 2): 

Input: (obs, act) the output tuple from Preprocessor 
Output: probability distribution over robot states (x indices) 
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