
One computation that comes up when interpreting the sonar sensors on the robots is 
the following: Given a distance measurement from one of the sonars, return an 
instance of Point (look at the documentation of the util module), in the global 
odometry frame, the same coordinate frame that the robot's pose is measured, 
representing where the sonar beam bounced off an object. To do this, we make the 
assumption that the sonar beam is a line segment emanating from the sonar sensor. 

To compute this, we need to know the location and orientation (an instance of Pose) of 
the sonar on the robot and we need to know the Pose of the robot. 

The sonar location on the robot is given by Pose(xS, yS, thetaS) where, xS and yS
are the center of the sensor (relative to the center of the robot) and thetaS is 
the angle that the beam makes to the robot's heading (the direction the robot's 
nose points to). 
The robot's pose is Pose(xR, yR, thetaR), as described in the Lab Infrastructure 
Guide. 

It is useful when computing this to think about first finding the location of the hit point 
relative to the robot and then computing the position of that point relative to the global 
odometry frame. 

Here's a useful bit of math. Imagine you have two coordinate frames, call them A and 
B. The origin of B is at location (xB, yB), relative to A, and the x-axis of B is rotated by 
thetaB relative to the x-axis of A. Then, if we we have a point with coordinates bx and 

Problem Wk.11.1.6: Sonar hit

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util.Point-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util.Pose-class.html


by relative to coordinate frame B, we can find the coordinates ax and ay of that point 
relative to A as follows: 

ax = xB + cos(thetaB)*bx - sin(thetaB)*by 
ay = yB + sin(thetaB)*bx + cos(thetaB)*by 

Note that when thetaB is zero, this says that ax = xB + bx and ay = yB + by, which is 
what we would expect. Look at the documentation for Pose.transformPoint in module 
util; it transforms the Point by displacing it by pose.x and pose.y and rotating it by 
pose.theta. 

For debugging, you might find it useful to draw a picture of the test cases so as to 
understand what the answer is supposed to be. 

Write the function sonarHit that is given a distance measurement from one of the 
sonars, the sonar's pose on the robot and the robot's pose. It should return an 
instance of Point (in the global odometry frame, the same coordinate frame that the 
robot's pose is measured) representing where the sonar beam bounced off an object. 

You need to specify util. to get functions and classes from util. 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util.Pose-class.html#transformPoint
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util.Pose-class.html#transformPoint


MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

