
Design Lab 13 6.01 – Fall 2011
I Walk the Line

Goals: In this lab you implement a system for estimating the location of a robot as it
moves down a hallway starting from an uncertain location. You will:

Understand a preprocessor, which transforms sensor data into inputs for •

a state estimator
Construct a state estimator and stochastic state machine with realistic ob­•

servation and transition models for localization with the 6.01 robots
Build a complete sytem demonstrating robot position localization in a •

one-dimensional world, within the soar simulator

Resources: You can do the lab on any computer with soar. This lab should be done with a
partner.
Do athrun 6.01 getFiles. The relevant files (in ~/Desktop/6.01/designLab13) are

lineLocalizeSkeleton.py: file to write your code in •
lineLocalizeBrain.py: brain file to run, to test robot localization •

If you haven’t done Wk.12.2.3 and read Wk.11.1.7 and homework 4, do that now.

1 Overview
In this lab, we will implement, and ultimately test in soar, a robot localizer, as outlined in tutor
problems Wk.11.1.7 and Wk.12.2.3. This lab will focus on localization in a one-dimensional
world, but the basic ideas will allow you to implement a localizer for a two-dimensional world in
a later lab.

Here is the architecture of the system we will construct.

Preprocessor Estimator

Driver

Select(1)io.SensorInput

io.Action
io.Action

Belief
Obs

Act

The Driver, PreProcessor and Select state machine classes are already implemented. The
Driver machine generates instances of io.Action that make the robot move forward; the Se­
lect(1) machine takes tuples (or lists) of values as input and always returns the second element
of the tuple as output. The robot knows the ideal readings for each of the possible discrete loca­
tions it might be in, but doesn’t know where it is initially; the goal of the state estimation process

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;

the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].

1

Design Lab 13 6.01 Fall 2011

is to determine the robot’s location. The effect of this behavior is that the robot always drives for­
ward, but the state estimation process is running in parallel, and as a side effect, the current belief
state estimate of where the robot is in the world will be displayed in a window.

2 Preprocessor
The preprocessor module takes sensor data from the sonar and the odometer of the robot, and
transforms them into input information about the observation made and action performed, for
the state estimator. Tutor problem Wk.12.2.3 describes the preprocessor module in detail. You
will probably need to refer back to some of the definitions in that problem, so plan on keeping the
Tutor page open.

In the file lineLocalizeSkeleton.py you will find the state machine class PreProcess that
implements the preprocessor module. The code is reproduced below:

class PreProcess(sm.SM):
def __init__(self, numObservations, stateWidth):

self.startState = (None, None)

self.numObservations = numObservations

self.stateWidth = stateWidth

def getNextValues(self, state, inp):

(lastUpdatePose, lastUpdateSonar) = state

currentPose = inp.odometry

currentSonar = idealReadings.discreteSonar(inp.sonars[0],

self.numObservations)
if lastUpdatePose == None:

return ((currentPose, currentSonar), None)
else:

action = discreteAction(lastUpdatePose, currentPose,
self.stateWidth)

print (lastUpdateSonar, action)
return ((currentPose, currentSonar), (lastUpdateSonar, action))

Only works when headed to the right

def discreteAction(oldPose, newPose, stateWidth):

return int(round(oldPose.distance(newPose) / stateWidth))

Step 1. Be sure that you understand the implementation of the preprocessor machine.

Check Yourself 1. What is the internal state of the machine?

What is the starting state?

Step 2. Test the preprocessor on the example from tutor problem Wk.12.2.3 as follows:

2

Design Lab 13 6.01 Fall 2011

Run the lineLocalizeSkeleton.py file in Idle. •
Make an instance of the preprocessor machine, called pp1, using parameters that match the tutor •
problem: 10 discrete observation values, 10 discrete location values, xMin = 0.0 and xMax =
10.0 (this means that the state width is 1.0 in this example).

Do pp1.transduce(preProcessTestData).
•
Make sure the outputs match the ones from the tutor problem. •

Note that the PreProcess machine print its output on each step.

3 State Estimator
The estimator module in our architecture will be an instance of seGraphics.StateEstimator,
which we have already written; it’s just like the state estimator you wrote in Wk.12.2.2, but it
displays the current belief state and observation probabilities in a pair of windows. Whenever we
make an instance of a state estimator, we have to pass in an instance of ssm.StochasticSM, which
describes what we know about the system whose hidden state we are trying to estimate. Our job,
in this section of the lab, is to create the appropriate ssm.StochasticSM, with an initial belief
distribution, an observation model, and a transition model, for the robot localization problem.
The state that we are trying to estimate is the discretized x coordinate of the robot’s location, which
can be in the range 0 to numStates - 1.

You may find it helpful to refer to the following figure which provides a schematic illustration
of a robot with discretized position, observing discretized sonar readings from a staggered
wall next to it.

0 numStates-1

xMin xMax

0

numObservations-1

ix

0.0

sonarMax

ideal[ix]

Bold labels are discrete state and observation indices.
Italic labels are real-valued robot locations or sonar readings.
Dark line is actual location of a wall.
Green boxes are possible discrete robot locations.
Blue boxes are possible discrete sonar readings.
Red bars indicate the distribution observationDistribution(ix).

wall

3

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/ssm.StochasticSM-class.html

Design Lab 13	 6.01 Fall 2011

The file lineLocalizeSkeleton.py contains the following skeleton of a procedure that should
construct and return the appropriate ssm.StochasticSM model. The parameters are:

ideal: a list of discretized ideal sonar readings, of length numStates•
xMin, xMax: the minimum and maximum x coordinates the robot can travel between •
numStates: the number of discrete states into which the x range is divided •
numObservations: the number of discrete observations •

def makeRobotNavModel(ideal, xMin, xMax, numStates, numObservations):

startDistribution = None

def observationModel(ix):

pass
def transitionModel(a):

pass
return ssm.StochasticSM(startDistribution, transitionModel, observationModel)

3.1 Initial distribution

Step 3.	 Define startDistribution, which should be uniform over all possible discrete robot locations.
You can create a uniform distribution over a range of integers with dist.squareDist(lo, hi).

3.2 Observation model
The observation model is a conditional probability distribution, represented as a procedure that
takes a state (discrete robot location) as input and returns a distribution over possible observa­
tions (discrete sonar readings). Our job is to create an observation model that characterizes the
distribution of sonar readings that are likely to occur when the robot is in a particular location.
This figure shows a histogram of 10,000 sonar readings generated in a situation in which there were
100 possible discrete sonar values over the range 0 to 1.5 m and where the ideal sonar reading was
0.5 m. The x axis is the discrete sonar reading and the y axis is the number of readings (out of
10,000) that fell into that interval.

4

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html

Design Lab 13	 6.01 Fall 2011

It has the following features:
There is always a non-trivial likelihood of getting an observation at the maximum range (due to •
reflections, etc). The maximum value is sonarDist.sonarMax.

It is most likely to get an observation at the ideal distance, but there might be small relative
•
errors in the observation (that is, we might see an object at 0.88 meters when it’s really at 0.9

meters).

There is some small chance of making any observation (due to someone walking by, etc.).
•

Pay particular attention to the ’width’ of the noise distribution. It is important to write your mix­
ture models so they are sensitive to the discretization granularity of the sonar readings: with the
same amount of noise in the real world, the width in terms of the number of bins will be different
for different granularities.
You should use dist.MixtureDist, dist.triangleDist, dist.squareDist, and dist.DeltaDist
to construct a distribution that describes well the data shown in histogram.

Check Yourself 2.	 Sketch out your plan for the observation model. Be sure you understand
the type of the model and the mixture distributions you want to create. Ask
a staff member if you’re unsure on any of these points.

Step 4.	 Implement the observation model and test it to be sure it’s reasonable. It doesn’t need to match
the histogram in the figure exactly.

For debugging, you can create a model (which is a ssm.StochasticSM) like this:

model = makeRobotNavModel(testIdealReadings, 0.0, 10.0, 10, 10)

Then you can get the observation conditional probability distribution like this:

model.observationDistribution

Here, testIdealReadings is the same set of ideal readings from tutor problem Wk.12.2.3.
Debug your distributions by plotting them, being sure that you have started Idle with -n. If d is a
distribution you’ve created, you can plot it with distPlot.plot(d).
If observationModel is your observation model, using the readings in testIdealReadings,
write down the 4 highest-probability entries in observationModel(7) (this is an instance of
DDist). What does the 7 stand for here?

Step 5.	 Now, make a model for the case with 100 observation bins, instead of 10.

model100	 = makeRobotNavModel(testIdealReadings100, 0.0, 10.0, 10, 100)

Plot the observation distribution for robot location 7 in model and model100. Be sure they are
consistent and correct.

5

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist-module.html

Design Lab 13	 6.01 Fall 2011

Checkoff 1.	 Wk.13.2.1: Show your observation distribution plots to a staff member and
explain what they mean.

3.3 Transition model
The transition model is a conditional probability distribution, represented as a procedure that
takes an action as input and returns a procedure; that procedure takes a starting state (discrete
robot location) as input, and returns a distribution over resulting states (discrete robot locations).
You can compute the next location that would result if there were no error in odometry, and then
return a distribution that takes into account the fact that there might be errors in the robot’s re­
ported motion.

For now, the only error in the transitions is due to discretization of the reported actions. Think
about what discrete locations the robot could possibly have moved to, given a reported action of
having moved k discrete locations. Use a triangle distribution to model the discretization error.

Check Yourself 3.	 Sketch out your plan for the transition model. Be sure you understand the
type of the models and the distributions you want to create. Ask a staff
member if you’re unsure on any of these points.

Step 6.	 Implement the transition model and test it to be sure it’s reasonable. Create a ssm.StochasticSM,
and then get the transition model (which is a procedure that returns a conditional probability
distribution) like this:

model = makeRobotNavModel(testIdealReadings, 0.0, 10.0, 10, 10)

model.transitionDistribution

If transitionModel is your transition model, write down transitionModel(2)(5) (this is an
instance of DDist). What do the 2 and 5 stand for here? Be sure the result makes sense to you.

3.4 Combined preprocessing and estimation

Step 7.	 Now we’ll put the two modules we just made together and be sure they work correctly.
Use sm.Cascade to combine an instance of your PreProcess class and an instance of the
seGraphics.StateEstimator class, which is given your ssm.StochasticSM model, using 10
discrete observation values, 10 discrete location values, xMin = 0.0, and xMax = 10.0. Call this
machine ppEst.

6

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.Cascade-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/seGraphics.StateEstimator-class.html

Design Lab 13	 6.01 Fall 2011

Check Yourself 4. Do ppEst.transduce(preProcessTestData). Compare the result to
the belief states in Wk.12.2.3. Remember that you are now assuming noisy
observations and noisy actions. Are your results consistent with the ones
you found in the tutor?

Checkoff 2. Wk.13.2.2: Show your answers to the questions above to a staff member.
Explain what they mean.

4 Putting it All Together
Now, we’ll put all the machines together to make a behavior that can control the robot. The file
lineLocalizeBrain.py contains all the scaffolding necessary. It makes one call that you need
to think about:

robot.behavior = \
lineLocalize.makeLineLocalizer(numObservations, numStates, ideal, xMin, xMax, y)

Step 8.	 In your lineLocalizeSkeleton.py file, implement the procedure makeLineLocalizer with
the arguments shown above; it should construct a complete robot behavior, as outlined in the archi­
tecture diagram, whose inputs are io.SensorInput instances and whose outputs are io.Action
instances. Read about the sm.Select state machine in the software documentation.

You will need instances of the preprocessor and estimator machines like those you made in the
previous section, together with the driver state machine. The driver is a state machine whose input
is an instance of io.SensorInput and whose output is an instance of io.Action. You can create
it with

move.MoveToFixedPose(util.Pose(xMax, robotY, 0.0), maxVel = 0.5)

assuming that the robot starts at some location with y coordinate robotY, and will move to the
right until its x coordinate is xMax.

Step 9.	 Start soar and run your behavior using lineLocalizeBrain.py in the world worlds/oneDdiff.py.
It will pop up windows like these (to see the colors, look at it online):

The first window shows, for each state (possible discrete location of the robot), how likely the cur­
rent observation is in that state. In this example, the robot’s current observation is one that is likely
to be observed when it is in any of the locations that is colored blue, and unlikely to be observed
in the locations colored red. The second window shows the current belief state, using colors to
indicate probabilities. Black is the uniform probability, brighter blue is more likely, brighter red

7

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.SensorInput-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.Action-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm.Select-class.html
http:worlds/oneDdiff.py

Design Lab 13	 6.01 Fall 2011

is less likely. The actual location of the robot is shown with a small gold square in the belief state
window.

Use the step button in soar to move the robot step by step and look at and understand the displays.
It is necessary to move the robot two steps before the displays become interesting.

Step 10.	 Now run your behavior in the world oneDreal.py (you will need to edit the line in lineLocal­
izeBrain.py that selects the world file, as well as select a new simulated world in soar). What is
the essential difference between this world and oneDdiff.py?

Step 11.	 Now run your behavior in the world oneDslope.py, without changing the world file selected
in the brain. This will mean that the robot thinks it is in the world oneDreal.py, and has obser­
vation models that are appropriate for that world, but it is, instead, in an entirely different world.
What happens when you run it? What do the displays mean?

Checkoff 3. Wk.13.2.3: Demonstrate your running localization system to a staff mem­
ber. Explain the meanings of the colors in the display windows and argue
that what your system is doing is reasonable. Explain why the behavior
differs between oneDreal and oneDdiff. Explain what happens when
there is a mismatch between the world and the model.

5 If you’re interested in doing more...
Here are some possible extensions to this lab.

5.1 Real robot
Try your localizer on the real robot. You’ll need to:

Set maxVel to 0.1
•

Take out the discreteStepLength call from the brain. •

Change cheatPose to False•

Change the y value of the target pose for the driver to 0.0 •

Use boxes covered with bubble wrap to set up a world that corresponds to oneDreal.py.•

(Possibly) adjust the amount of noise in your model of the sonar and the motion error. •

5.2 Handle Teleportation

Add this code to your brain file:

teleportProb = 0.0

import random

class RandomPose:

def draw(self):

x = random.random()*(xMax - xMin) + xMin

return (x, y, 0.0)

io.enableTeleportation(teleportProb, RandomPose())

8

http:oneDslope.py
http:oneDreal.py
http:oneDreal.py

Design Lab 13 6.01 Fall 2011

If you set teleportProb to a value greater than 0, it will, with that probability, on each motion
step, ’teleport’ the robot to an x coordinate chosen uniformly at random from the robot’s x range.
(maintaining the same heading and y coordinate). This is a good way to test your localization.

If necessary, modify your transition distribution so that it can cope with a world in which the robot
might teleport. Think about what parameter in your model should match teleportProb.

Turn up the teleportation probability and see if your robot can cope.

9

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

