
6.01: Introduction to EECS I Lecture 13 May 3, 2011


6.01: Introduction to EECS I 

Optimizing a Search 

May 3, 2011 

Search Example 

Find minimum distance path between 2 points on a rectangular grid. 

A B C 

D E F 

G H I 

Represent all possible paths with a tree (shown to just length 3). 

B D 

A 

B F 

C 

B 

B D F H 

E 

B D 

A 

B D F H 

E 

D 

A 

D H 

G 

Find the shortest path from A to I. 

Order Matters 

Replace last node in agenda by its children: 

step Agenda 

0: A 

1: AB AD 

2: AB ADA ADE ADG 

3: AB ADA ADE ADGD ADGH 

also Depth First Search 

B D 

A 

B F 

C 

B 

B D F H 

E 

B D 

A 

B D F H 

E 

D 

A 

D H 

G 

Nano-Quiz Makeups 

Wednesday, May 4, 6-11pm, 34-501. 

– everyone can makeup/retake NQ 1 

– everyone can makeup/retake two additional NQs 

– you can makeup/retake other NQs excused by Sˆ3 

If you makeup/retake a NQ, the new score will replace the old 

score, even if the new score is lower! 

Order Matters 

Replace first node in agenda by its children: 

step Agenda 

0: A 

1: AB AD 

2: ABA ABC ABE AD 

3: ABAB ABAD ABC ABE AD 

Depth First Search 

B D 

A 

B F 

C 

B 

B D F H 

E 

B D 

A 

B D F H 

E 

D 

A 

D H 

G 

Order Matters 

Remove first node from agenda. Add its children to end of agenda. 

B D 

A 

B F 

C 

B 

B D F H 

E 

B D 

A 

B D F H 

E 

D 

A 

D H 

G 

step Agenda 

8: ADG ABAB ABAD ABCB ABCF ABEB ABED 

ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH 

9: ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH 

ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH 

Breadth First Search 

1




A AB AD ABC ABE ADG ABCF ABCFI A AB AD ABC ABE ADG ABCF ABCFI 

6.01: Introduction to EECS I


Order Matters 

Replace last node by its children (depth-first search): 

– implement with stack (last-in, first-out). 

Remove first node from agenda. Add its children to the end of the 

agenda (breadth-first search): 

– implement with queue (first-in, first-out). 

Action Costs 

Some actions can be more costly than others.


Compare navigating from A to I on two grids.


Lecture 13 May 3, 2011


Today 

Generalize search framework → uniform cost search. 

Improve search efficiency → heuristics. 

Breadth-First with Dynamic Programming 

First consider actions with equal costs. 

1 1 

1 1 

1 1 

1 

1 

1 

1 

1 

1 

A B C 

D E F 

G H I 

1 

5 

1 1 

1 1 

1 

5 

1 

1 

1 

1 

A B 

C 

D E F 

G H I 

1 1 

1 1 

1 1 

1 

1 

1 

1 

B C 

1 

1 

A 

D E F 

G H I 

Visited A B D C E G F H I 

Agenda: A AB AD ABC ABE ADG ABCF ABEH ABCFI 
Modify search algorithms to account for action costs 

→ Uniform Cost Search 

Breadth-First with Dynamic Programming Breadth-First with Dynamic Programming 

Notice that we expand nodes in order of increasing path length. This algorithm fails if path costs are not equal. 

1 1 

1 1 

1 1 

1 

1 

1 

1 

1 

1 

A B C 

D E F 

G H I 

1 

5 

1 1 

1 1 

1 

5 

1 

1 

1 

1 

A B 

C 

D E F 

G H I 

Visited A B D C E G F H I 

Agenda: 
0 1 1 2 2 2 3 3 

ABEH 
4 

Visited A B D C E G F H I 

Agenda: 
0 1 1 6 2 2 11 3 

ABEH 
12 

Nodes are not expanded in order of increasing path length. 

2




6.01: Introduction to EECS I


Uniform Cost Search


Associate action costs with actions.


Enumerate paths in order of their total path cost.


Find the path with the smallest path cost = sum of action costs


along the path.


→ implement agenda with priority queue. 

Priority Queue 

Push with cost, pop smallest cost first. 

>>> pq = PQ()


>>> pq.push(’a’, 3)


>>> pq.push(’b’, 6)


>>> pq.push(’c’, 1)


>>> pq.pop()


’c’


>>> pq.pop()


’a’


Search Node 

class SearchNode: 
def __init__(self, action, state, parent, actionCost): 

self.state = state 
self.action = action 
self.parent = parent 
if self.parent: 

self.cost = self.parent.cost + actionCost 
else: 

self.cost = actionCost 
def path(self): 

if self.parent == None: 
return [(self.action, self.state)] 

else: 
return self.parent.path() + [(self.action, self.state)] 

def inPath(self, s): 
if s == self.state: 

return True 
elif self.parent == None: 

return False 
else: 

return self.parent.inPath(s) 

Lecture 13	 May 3, 2011


Priority Queue 

Same basic operations as stacks and queues, with two differences: 

• items are pushed with numeric score: the cost. 

• popping returns the item with the smallest cost. 

Priority Queue 

Simple implementation using lists. 

class PQ: 
def __init__(self): 

self.data = [] 
def push(self, item, cost): 

self.data.append((cost, item)) 
def pop(self): 

(index, cost) = util.argmaxIndex(self.data, lambda (c, x): -c) 
return self.data.pop(index)[1] # just return the data item 

def empty(self): 
return len(self.data) == 0 

The pop operation in this implementation can take time proportional 

to the number of nodes (in the worst case). 

[There are better algorithms!] 

Uniform Cost Search 

def ucSearch(initialState, goalTest, actions, successor): 
startNode = SearchNode(None, initialState, None, 0) 
if goalTest(initialState): 

return startNode.path() 
agenda = PQ() 
agenda.push(startNode, 0)

while not agenda.empty():


parent = agenda.pop()

if goalTest(parent.state): 

return parent.path() 
for	 a in actions:


(newS, cost)= successor(parent.state, a)

if not parent.inPath(newS):


newN = SearchNode(a, newS, parent, cost)

agenda.push(newN, newN.cost)


return None


goalTest was previously performed when children pushed on agenda.


Here, we must defer goalTest until all children are pushed (since a


later child might have a smaller cost).


The goalTest is implemented during subsequent pop.


3




6.01: Introduction to EECS I


Dynamic Programming Principle 

The shortest path from X to Z that goes through Y is made up of 

• the shortest path from X to Y and 

• the shortest path from Y to Z. 

We only need to remember the shortest path from the start state 

to each other state! 

Want to remember shortest path to Y . Therefore, defer remem­

bering Y until all of its siblings are considered (similar to issue with 

goalTest) — i.e., remember expansions instead of visits. 

ucSearch with Dynamic Programming 

Lecture 13 May 3, 2011


ucSearch with Dynamic Programming 

def ucSearch(initialState, goalTest, actions, successor): 
startNode = SearchNode(None, initialState, None, 0) 
if goalTest(initialState): 

return startNode.path() 
agenda = PQ() 
agenda.push(startNode, 0) 
expanded = {}
while not agenda.empty(): 

parent = agenda.pop() 
if not expanded.has_key(parent.state): 

expanded[parent.state] = True 
if goalTest(parent.state): 

return parent.path() 
for a in actions: 

(newS, cost) = successor(parent.state, a) 
if not expanded.has_key(newS): 

newN = SearchNode(a, newS, parent, cost) 
agenda.push(newN, newN.cost) 

return None 

Conclusion 

Searching spaces with unequal action costs is similar to searching 

spaces with equal action costs. 

Just substitute priority queue for queue. 
1 

5 

1 1 

1 1 

1 

5 

1 

1 

1 

1 

A B 

C 

D E F 

G H I 

Expanded: A B D E G F H 

Agenda: A AB AD ABC 
0 1 1 6 2 2 2 3 3 3 

ABE ADE ADG ABEF ABEH ADGH 

ABEFC ABEFI ABEHI

8 4 4


Stumbling upon the Goal 

Our searches so far have radiated outward from the starting point.


We only notice the goal when we stumble upon it.


Example: Start at E, go to I.


1 1 

1 1 

1 1 

1 

1 

1 

1 

1 

1 

A B C 

D E F 

G H I 

Expanded: E B D F H A C G 

Heuristics 

Our searches so far have radiated outward from the starting point. 

We only notice the goal when we stumble upon it. 

This results because our costs are computed for just the first part 

of the path: from start to state under consideration. 

We can add heuristics to make the search process consider not just 

the starting point but also the goal. 

Heuristic: estimate the cost of the path from the state under con­

sideration to the goal. 

E EB ED EF EHG EHIAgenda: EFC EFIEH EBA EDGEBC EDA 
0 1 1 1 1 2 2 2 2 2 2 2 2 

Too much time searching paths on wrong side of starting point! 

4




6.01: Introduction to EECS I Lecture 13 May 3, 2011 

Heuristics 

Add Manhattan distance to complete the path to the goal. 

A* = ucSearch with Heuristics 

A heuristic function takes input s and returns the estimated cost 

from state s to the goal. 
1 1 

1 1 

1 1 

1 

1 

1 

1 

1 

1 

A B C 

D E F 

G H I 

Expanded: E F H 

E EB ED EF EH EFC EFI EHG EHI 
2 4 4 2 2 4 2 4 2 

Agenda: 

Admissible Heuristics 

An admissible heuristic always underestimates the actual distance. 

If the heuristic is larger than the actual cost from s to goal, then 

the “best” solution may be missed → not acceptable! 

If the heuristic is smaller than the actual cost, the search space will 

be larger than necessary → not desireable, but right answer. 

The ideal heuristic should be 

– as close as possible to actual cost (without exceeding it) 

– easy to calculate 

A* is guaranteed to find shortest path if heuristic is admissible. 

Summary 

Developed a new class of search algorithms: uniform cost. 

Allows solution of problems with different action costs. 

Developed a new class of optimizations: heuristics. 

Focuses search toward the goal. 

Nano-Quiz Makeups: Wednesday, May 4, 6-11pm, 34-501. 

– everyone can makeup/retake NQ 1 

– everyone can makeup/retake two additional NQs 

– you can makeup/retake other NQs excused by Sˆ3 

If you makeup/retake a NQ, the new score will replace the old 

score, even if the new score is lower! 

def ucSearch(initialState, goalTest, actions, successor, heuristic): 
startNode = SearchNode(None, initialState, None, 0) 
if goalTest(initialState): 

return startNode.path()

agenda = PQ()

agenda.push(startNode, 0)

expanded = { } 

while not agenda.empty():


n = agenda.pop() 
if not expanded.has_key(n.state):


expanded[n.state] = True

if goalTest(n.state):


return n.path() 
for	 a in actions: 

(newS, cost) = successor(n.state, a) 
if not expanded.has_key(newS): 

newN = SearchNode(a, newS, n, cost) 
agenda.push(newN, newN.cost + heuristic(newS)) 

return None 

Check Yourself 

Consider three heuristic functions for the “eight puzzle”: 

a. 0 

b. number of tiles out of place 

c. sum over tiles of Manhattan distances to their goals 

1 2 3 
4 5 6 
7 8 

Let Mi = # of moves in the best solution using heuristic i 

Let Ei = # of states expanded during search with heuristic i 

Which of the following statements is/are true? 

1. Ma = Mb = Mc 2. Ea = Eb = Ec 
3. Ma > Mb > Mc 4. Ea ≥ Eb ≥ Ec 

5. the same “best solution” will result for all three heuristics 

1 2 
3 4 5 
6 7 8 

5




MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

