
Problem Wk.10.1.6: Implementing Joint distributions

Part 1: Creating a joint distribution 

Write the JDist function, which will represent the joint probability distribution for two 
variables A and B. The function is given as inputs PA, which is a DDist representing the 
probability distribution for A, and PBgA, which is a function that takes a value of A as 
input and returns a DDist representing the conditional probability of B given A (i.e., P(B | 
A)). Consider the following example: 

def PTgD(val):
if val == 'disease':

 return dist.DDist({'posTest': 0.9, 'negTest':0.1})
else:

 return dist.DDist({'posTest': 0.5, 'negTest':0.5}) 

>>> disease = dist.DDist({'disease' : 0.1, 'noDisease' : 0.9})

>>> dist.JDist(disease, PTgD)

DDist((noDisease, posTest): 0.450000, (disease, posTest): 0.090000,


(noDisease, negTest): 0.450000, (disease, negTest): 0.010000) 

JDist should return a DDist whose items are tuples of the form (a,b), with values that 
are the corresponding joint probabilities. In the tuple (a,b), a is an element in the 
support of P(A) and b is an element in the support of P(B | A) 

JDist is in the dist module, so it has access to DDist directly. So, in your 
solution, you do not need to use dist.DDist; you can just DDist. 

Part 2: Implement marginalization 

Add the marginalizeOut(self, index) method to the DDist class; index is an integer 
specifying which of the variables to marginalize out; if index is 0, then marginalize out 
the first variable, if index is 1, then marginalize out the second variable. The method 
should return a DDist. 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/dist.DDist-class.html


Continuing the example in the previous part of this problem: 

>>> JDist(disease, PTgD).marginalizeOut(0)
DDist(posTest: 0.540000, negTest: 0.460000) 

The following function is already defined: 

def removeElt(items, i):
result = items[:i] + items[i+1:]
if len(result) == 1:

return result[0]
else:

 return result 

This removes the ith entry from a tuple. However, if the resulting tuple has a single 
element, it just returns that element, instead of a tuple of one element. 

The following function is also defined: 

def incrDictEntry(d, k, v):
if d.has_key(k):

d[k] += v
else:

 d[k] = v 

This increments the key k in dictionary d by the value v. If the key does not already 
exist, it behaves as if the key existed with the value 0. 

Part 3: Implement conditioning 

When we condition on one of the random variables having a particular value, that 
variable becomes irrelevant and need not be represented. Conditioning effectively 
selects a row or a column of the joint distribution and normalizes it appropriately. 
Implement the conditionOnVar(self, index, value) method of the DDist class; index is 0 
or 1, determining which variable is being specified, and value gives the value that 
variable is being assumed to have. The method should return a DDist over the variable 



that was left unspecified. Continuing the example: 

>>> JDist(disease, PTgD).conditionOnVar(1, 'posTest')
DDist(noDisease: 0.833333, disease: 0.166667) 

The removeElt function is also defined for this problem. 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

