6.01: Introduction to EECS I

Op-Amps

Last Time: The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

Last Time: Analyzing Circuits

Circuits are analyzed by combining three types of equations.

- KVL: sum of voltages around any closed path is zero.
- KCL: sum of currents out of any closed surface is zero.
- Element (constitutive) equations
 - resistor: V = IR
 - voltage source: $V = V_0$
 - current source: $I = I_0$

Last Time: Analyzing Circuits

Many KVL and KCL equations are redundant. We looked at three methods to systematically identify a linearly independent set.

How many of the following are true?

- 1. $v_1 = v_2 + v_6 + v_5$
- 2. $v_6 = e_1 e_2$
- 3. $i_6 = (e_1 e_2)/R_6$
- 4. $i_6 = i_b i_c$
- 5. $v_6 = (i_b i_c)R_6$

How many of the following are true? 3

1.
$$v_1 = v_2 + v_6 + v_5$$
 \checkmark
2. $v_6 = e_1 - e_2$ \checkmark
3. $i_6 = (e_1 - e_2)/R_6$ \checkmark

4.
$$i_6 = i_b - i_c$$
 \times $i_6 = i_c - i_b$
5. $v_6 = (i_b - i_c)R_6$ \times $v_6 = (i_c - i_b)R_6$

Node Voltages with Component Currents

We will study a variation of the node method (NVCC) in software lab today.

Interaction of Circuit Elements

Circuit design is complicated by interactions among the elements. Adding an element changes voltages & currents **throughout** circuit.

Example: closing a switch is equivalent to adding a new element.

How does closing the switch affect V_o and I_o ?

- 1. V_o decreases, I_o decreases
- 2. V_o decreases, I_o increases
- 3. V_o increases, I_o decreases
- 4. V_o increases, I_o increases
- 5. could be any of above, depending on bulb resistance

Start by computing V_o and I_o when the switch is open.

Calculate V_o using voltage divider relation:

$$V_o = \frac{2\Omega}{1\Omega + 2\Omega} \, 12 \mathsf{V} = 8 \mathsf{V}$$

Calculate I_o by lumping resistors into series equivalent:

$$I_o = \frac{12\mathsf{V}}{1\Omega + 2\Omega} = 4\mathsf{A}$$

Now compute V_o and I_o when the switch is closed.

Assume the light bulb can be represented by a resistor R ($0 < R < \infty$). Then R is in parallel with the 2Ω resistor.

$$V_o = \frac{2\Omega||R|}{1\Omega + 2\Omega||R|} 12V = \frac{\frac{2\Omega \times R}{2\Omega + R}}{1\Omega + \frac{2\Omega \times R}{2\Omega + R}} 12V = \frac{2R}{2\Omega + 3R} 12V \le 8V$$

$$I_o = \frac{12\mathsf{V}}{1\Omega + 2\Omega||R} = \frac{12\mathsf{V}}{1\Omega + \frac{2\Omega \times R}{2\Omega + R}} = \frac{2\Omega + R}{2\Omega + 3R} \cdot 12\mathsf{A} \ge 4\mathsf{A}$$

How does closing the switch affect V_o and I_o ? 2

- 1. V_o decreases, I_o decreases
- 2. V_o decreases, I_o increases
- 3. V_o increases, I_o decreases
- 4. V_o increases, I_o increases
- 5. could be any of above, depending on bulb resistance

Buffering with Op-Amps

Interactions between elements can be reduced (or eliminated) by using an op-amp as a **buffer**.

This op-amp circuit produces an output voltage equal to its input voltage (8V) while having no effect on the left part of the circuit.

Today: how to analyze and design op-amp circuits

Dependent Sources

To analyze op-amps, we must introduce a new kind of element: a dependent source.

A dependent source generates a voltage or current whose value depends on another voltage or current.

Example: current-controlled current source

Find $\frac{V_o}{V_i}$.

- 1. 500
- 2. $\frac{1}{20}$
- 3. 1
 - 4. $\frac{1}{2}$
- 5. none of the above

Find $\frac{V_o}{V_i}$.

$$I_B = \frac{V_i}{1000\,\Omega}$$

$$V_o = 100 I_B \times 5 \Omega = 100 \frac{V_i}{1000 \Omega} \times 5 \Omega = \frac{1}{2} V_i$$

Find $\frac{V_o}{V}$.

- 1. 500
- 2. $\frac{1}{20}$
- 3. 1
 - 4. $\frac{1}{2}$
- 5. none of the above

Dependent Sources

Dependent sources are two-ports: characterized by two equations.

Here $V_1 = 0$ and $I_2 = -100 I_1$.

By contrast, one-ports (resistors, voltage sources, current sources) are characterized by a single equation.

Op-Amp

An op-amp (operational amplifier) can be represented by a voltagecontrolled voltage source.

A voltage-controlled voltage source is a two-port.

 $I_1=0$ and $V_2=KV_1$ where K is large (typically $K>10^5$).

Op-Amp: Analysis

Example. Find $\frac{V_o}{V_i}$ for the following circuit.

$$\begin{split} V_{+} &= V_{i} \\ V_{-} &= \frac{R_{1}}{R_{1} + R_{2}} \, V_{o} \\ V_{o} &= K \big(V_{+} - V_{-} \big) = K \big(V_{i} - \frac{R_{1}}{R_{1} + R_{2}} \, V_{o} \big) \\ &\frac{V_{o}}{V_{i}} = \frac{K}{1 + \frac{KR_{1}}{R_{1} + R_{2}}} = \frac{K \big(R_{1} + R_{2} \big)}{R_{1} + R_{2} + KR_{1}} \, \approx \, \frac{R_{1} + R_{2}}{R_{1}} \quad \text{(if K is large)} \end{split}$$

Non-inverting Amplifier

For large K, this circuit implements a non-inverting amplifier.

$$\frac{V_o}{V_i} = \frac{R_1 + R_2}{R_1} \ge 1$$

$$V_o \ge V_i$$

For which value(s) of R_1 and/or R_2 is $V_o = V_i$.

- 1. $R_1 \to \infty$
- 2. $R_2 = 0$
- 3. $R_1 \rightarrow \infty$ and $R_2 = 0$
- 4. all of the above
- 5. none of the above

For which value(s) of R_1 and/or R_2 is $V_0 = V_i$.

- 1. $R_1 \to \infty$
- 2. $R_2 = 0$
- 3. $R_1 \rightarrow \infty$ and $R_2 = 0$
- 5. none of the above

4. all of the above all are unity buffers

The "Ideal" Op-Amp

As $K \to \infty$, the difference between V_+ and V_- goes to zero.

Example:

$$V_i$$

$$V_{o} = K (V_{+} - V_{-}) = K (V_{i} - V_{o})$$

$$V_{o} = \frac{K}{1 + K} V_{i}$$

$$V_{+} - V_{-} = V_{i} - V_{o} = V_{i} - \frac{K}{1 + K} V_{i} = \frac{1}{1 + K} V_{i} = \frac{1}{K} V_{o}$$

$$\lim_{K \to \infty} (V_{+} - V_{-}) = 0$$

If the difference between V+ and V_- did not go to zero as $K\to\infty$ then $V_o=K$ (V_+-V_-) could not be finite.

The "Ideal" Op-Amp

The approximation that $V_+=V_-$ is referred to as the "ideal" op-amp approximation. It greatly simplifies analysis.

Example.

If $V_+ = V_-$ then $V_o = V_i$!

Determine the output of the following circuit.

- 1. $V_o = V_1 + V_2$
- 2. $V_0 = V_1 V_2$
- 3. $V_o = -V_1 V_2$
- 4. $V_o = -V_1 + V_2$
- 5 none of the above

Determine the output of the following circuit.

Ideal op-amp approximation:

$$V_- = V_+ = 0$$

KCL at V_- :

$$\frac{V_1 - 0}{1} + \frac{V_2 - 0}{1} + \frac{V_o - 0}{1} = 0$$

Solving:

$$V_0 = -V_1 - V_2$$

Determine the output of the following circuit. 3

- 1. $V_o = V_1 + V_2$
- 2. $V_0 = V_1 V_2$
- 3. $V_o = -V_1 V_2$ an inverting summer
- 4. $V_o = -V_1 + V_2$
- 5 none of the above

Determine R so that $V_o = 2(V_1 - V_2)$.

- 1. R = 0
- 2. R = 1
- 3. R = 2
- 4. $R \rightarrow \infty$
- 5. none of the above

Determine R so that $V_o = 2(V_1 - V_2)$.

No current in positive or negative inputs:

$$V_{+} = \frac{R}{1+R} V_{1}$$

$$V_{-} = V_{2} + \frac{1}{1+2} (V_{o} - V_{2}) = \frac{2}{3} V_{2} + \frac{1}{3} V_{o}$$

Ideal op-amp:

$$V_{+} = V_{-} = \frac{R}{1+R} V_{1} = \frac{2}{3} V_{2} + \frac{1}{3} V_{o}$$

$$V_o = \frac{3R}{1+R} V_1 - 2V_2$$
 \rightarrow $\frac{3R}{1+R} = 2$ \rightarrow $R = 2\Omega$

Determine R so that $V_o = 2(V_1 - V_2)$. 3

- 1. R = 0
- 2. R = 1
- 3. R = 2
- 4. $R \rightarrow \infty$
- 5. none of the above

The "Ideal" Op-Amp

The ideal op-amp approximation implies that both of these circuits function identically.

$$V_+ = V_- \rightarrow V_o = V_i !$$

The "Ideal" Op-Amp

The ideal op-amp approximation implies that both of these circuits function identically.

$$V_{+} = V_{-} \rightarrow V_{o} = V_{i}$$
!

This sounds a bit implausible!

Paradox

Try analyzing the voltage-controlled voltage source model.

These circuits seem to have identical responses if K is large.

Something is wrong!

"Thinking" like an op-amp

This reasoning is wrong because it ignores a critical property of circuits.

For a voltage to change, charged particles must flow.

To understand flow, we need to understand continuity.

Flows and Continuity

If a quantity is conserved, then the difference between what comes in and what goes out must accumulate.

Flows and Continuity

If a quantity is conserved, then the difference between what comes in and what goes out must accumulate.

If water is conserved then $\frac{dh(t)}{dt} \propto r_i(t) - r_o(t)$.

Leaky Tanks and Capacitors

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$\begin{array}{c|c}
 & i_0 \\
 & + \\
 & v \\
 & - \\
\end{array}$$

$$rac{dv}{dt} = rac{i_i - i_o}{C} \propto i_i - i_o$$
 analogous to $rac{dh}{dt} \propto r_i - r_i$

Charge Accumulation in an Op-Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op-amp.

This is not an accurate representation of what is inside an op-amp.

Op-Amp Model

Here is a more accurate circuit model of a μ A709 op-amp.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Op-Amp

This artwork shows the physical structure of a μ A709 op-amp.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Charge Accumulation in an Op-Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op-amp.

This is not an accurate representation of what is inside an op-amp.

This is a **model** of how the op-amp works.

This is an example of using circuits as a tool for modeling.

Circuits as Models

Circuits as models of complex systems: myelinated neuron.

Model of myelinated nerve fiber

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Charge Accumulation in an Op-Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op-amp.

This is not an accurate representation of what is inside an op-amp.

This is a **model** of how the op-amp works.

This is an example of using circuits as a tool for modeling.

If the input voltage to this circuit suddenly increases, then current will flow into the capacitor and gradually increase V_o .

As V_o increases, the difference $V_+ - V_-$ decreases, less current flows, and V_o approaches a final value equal to V_i .

If the input voltage to this circuit suddenly decreases, then current will flow out of the capacitor and decrease V_o .

As V_o decreases, the $|V_+-V_-|$ decreases, the magnitude of the current decreases, and V_o approaches a final value equal to V_i .

Regardless of how V_i changes, V_o changes in a direction to reduce the difference between V_i and V_o .

Switching the plus and minus inputs flips these relations. Now if the input increases, current will flow out of the capacitor and decrease V_o .

This makes the difference between input and output even bigger!

Similarly, if the input decreases, current will flow into the capacitor a increase V_o .

As the output diverges from the input, the magnitude of the capacitor current increases, and the rate of divergence increases!

Positive and Negative Feedback

Negative feedback (left) drives the output **toward** the input. Positive feedback (right) drives the output **away from** the input.

Paradox Resolved

Although both circuits have solutions with $V_o = V_i$ (large K), only the first is stable to changes in V_i .

Feedback to the positive input of an op-amp is unstable.

Use negative feedback to get a stable result.

What happens if we add third light bulb?

Closing the switch will make

1. bulb 1 brighter

2. bulb 2 dimmer

3. 1 and 2

- 4. bulbs 1, 2, & 3 equally bright
- 5. none of the above

What happens if we add third light bulb? 3

Closing the switch will make

- 1. bulb 1 brighter 2. bulb 2 dimmer

3. 1 and 2

- 4. bulbs 1, 2, & 3 equally bright
- 5. none of the above

What will happen when the switch is closed?

- 1. top bulb is brightest 2. right bulb is brightest
- right bulb is dimmest
 all 3 bulbs equally bright
 - 5. none of the above

What will happen when the switch is closed?

Closing the switch will have no effect on the left bulbs because no current will flow ($I_L=0$) when switch is open OR closed.

 \rightarrow This is half of the buffer idea: no input current!

When the switch is closed, $V_y = V_x$.

→ This is the other half: output voltage = input voltage!

What will happen when the switch is closed? 4

- 1. top bulb is brightest 2. right bulb is brightest
- 3. right bulb is dimmest 4. all 3 bulbs equally bright
 - 5. none of the above

The battery provides the power to illuminate the left bulbs. Where does the power come from to illuminate the right bulb?

Power Rails

Op-amps derive power from connections to a power supply.

Typically, the output voltage of an op-amp is constrained by the power supply:

$$-V_{EE} < V_o < V_{CC}$$
.

Summary

An op-amp can be represented as a voltage-dependent voltage source.

The "ideal" op-amp approximation is $V_+ = V_-$.

The ideal op-amp approximation only makes sense when the op-amp is connected with negative feedback.

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.