6.01: Introduction to EECS I

Circuits

March 15, 2011

The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The Circuit Abstraction

We can represent the flashlight as a voltage source (battery) connected to a resistor (light bulb).

The voltage source generates a voltage \boldsymbol{v} across the resistor and a current \boldsymbol{i} through the resistor.

The Circuit Abstraction

We can represent the flow of water by a circuit.

Flow of water into and out of tank are represented as "through" variables r_i and r_o , respectively. Hydraulic pressure at bottom of tank is represented by the "across" variable $P=\rho gh$.

The Circuit Abstraction

Circuits are important for two very different reasons:

- as physical systems
 - power (from generators and transformers to power lines)
 - electronics (from cell phones to computers)
- as models of complex systems
 - neurons
 - brain
 - cardiovascular system
 - hearing

The Circuit Abstraction Circuits are basis of enormously successful semiconductor industry.

of transistors Dual-Core Itanium 2. 1,000,000,000 Itanium 2. Itanium 100,000,000 Pentium 4 Pentium III 10.000.000 Pentium II Pentium• 80486 1,000,000 80386 802864 100,000 8086 10,000 1,000 1970 1980 1990 2000 2010

What design principles enable development of such complex systems?

year

The Circuit Abstraction

Circuits as models of complex systems: myelinated neuron.

Model of myelinated nerve fiber

¥ 'Gci fW' i b_bck b" '5```f][\hg`fYgYfj YX" H\]g' WbhYbh]g'Yl Wl XYX Zfca 'ci f'7fYUh]j Y 7ca a cbg`]WbgY": cf'a cfY]bZcfa Uh]cbz'gYY\htd.##cWk "a]h"YXi #ZJ]fi gY"

The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The **primitives** are the elements:

- sources,
- capacitors, and
- resistors.

The rules of combination are the rules that govern

- flow of current (through variable) and
- development of voltage (across variable).

Analyzing Circuits: Elements

We will start with the simplest elements: resistors and sources

Analyzing Simple Circuits

Analyzing simple circuits is straightforward.

Example 1:

The voltage source determines the voltage across the resistor, $v=1\mathrm{V}$, so the current through the resistor is $i=v/R=1/1=1\mathrm{A}$.

Example 2:

The current source determines the current through the resistor, i=1A, so the voltage across the resistor is $v=iR=1\times 1=1$ V.

Check Yourself

What is the current through the resistor below?

- 1. 1A
- 2. 2A
- 3. 0A
- 4. cannot determine
- 5. none of the above

Analyzing More Complex Circuits

More complex circuits can be analyzed by systematically applying Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Example: $-v_1 + v_2 + v_4 = 0$ or equivalently $v_1 = v_2 + v_4$.

How many other KVL relations are there?

Check Yourself

How many KVL equations can be written for this circuit?

1. 3

2. 4 3. 5

5. 7

4. 6

Analyzing Circuits: KVL

Planar circuits can be characterized by their "inner" loops. KVL equations for the inner loops are independent.

 $A: -v_1 + v_2 + v_4 = 0$

 $\mathsf{B}: -v_2 + v_3 - v_6 = 0$

 $C: -v_4 + v_6 + v_5 = 0$

Analyzing Circuits: KVL

All possible KVL equations for planar circuits can be generated by combinations of the "inner" loops.

 $\mathsf{A}: -v_1 + v_2 + v_4 = 0$

 $\mathsf{B}: -v_2 + v_3 - v_6 = 0$

 $\mathsf{A} \!+\! \mathsf{B} : -v_1 + v_2 + v_4 - v_2 + v_3 - v_6 = -v_1 + v_3 - v_6 + v_4 = 0$

KVL: Summary

The sum of the voltages around any closed path is zero.

One KVL equation can be written for every closed path in a circuit.

Sets of KVL equations are not necessarily linearly independent.

 KCL equations for the "inner" loops of planar circuits are linearly independent.

Kirchhoff's Current Law

The flow of electrical current is analogous to the flow of incompressible fluid (e.g., water).

Current i_1 flows into a **node** and two currents i_2 and i_3 flow out:

$$i_1 = i_2 + i_3$$

Kirchhoff's Current Law

The net flow of electrical current into (or out of) a **node** is zero.

Here, there are two nodes, each indicated by a dot.

The net current out of the top node must be zero:

$$i_1 + i_2 + i_3 = 0$$
.

Kirchhoff's Current Law

Electrical currents cannot accumulate in elements, so current that flows into a circuit element must also flow out.

 $i_1 = i_4$

 $i_2 = i_5$

 $i_3 = i_6$

Since $i_1 + i_2 + i_3 = 0$ it follows that

$$i_4 + i_5 + i_6 = 0$$
.

Check Yourself

How many linearly independent KCL equations can be written for the following circuit?

3.3

1. 1

2. 2

4. 4

5. 5

Check Yourself

How many distinct KCL relations can be written for this circuit?

1. 3

2. 4

3. 5

4. 6

5. 7

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

node 1: $i_1 + i_2 + i_3 = 0$

node 2: $-i_2+i_4+i_6=0$

nodes 1+2: $i_1 + i_2 + i_3 - i_2 + i_4 + i_6 = i_1 + i_3 + i_4 + i_6 = 0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

nodes 1+2: $i_1 + i_3 + i_4 + i_6 = 0$

node 3: $-i_3 - i_6 + i_5 = 0$

nodes 1+2+3: $i_1 + i_3 + i_4 + i_6 - i_3 - i_6 + i_5 = i_1 + i_4 + i_5 = 0$

Net current out of nodes 1+2+3 = net current into bottom node!

KCL: Summary

The sum of the currents out of any node is zero.

One KCL equation can be written for every closed surface (which contain one or more nodes) in a circuit.

Sets of KCL equations are not necessarily linearly independent.

KCL equations for every primitive node except one (ground) are linearly independent.

KVL, KCL, and Constitutive Equations

Circuits can be analyzed by combining

- all linearly independent KVL equations,
- all linearly independent KCL equations, and
- one constitutive equation for each element.

KVL, KCL, and Constitutive Equations

Unfortunately, there are a lot of equations and unknowns.

12 unknowns: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , i_1 , i_2 , i_3 , i_4 , i_5 and i_6 .

12 equations: 3 KVL + 3 KCL + 5 for resistors + 1 for V source

This circuit is characterized by 12 equations in 12 unknowns!

Node Voltages

The "node" method is one (of many) ways to systematically reduce the number of circuit equations and unknowns.

- \bullet label all nodes except one: ground (gnd) \equiv 0 volts
- write KCL for each node whose voltage is not known

• solve (here just 2 equations and 2 unknowns)

Loop Currents

The "loop current" method is another way to systematically reduce the number of circuit equations and unknowns.

- label all the loop currents
- write KVL for each loop

 $-V_0 + R_2(i_a - i_b) + R_4(i_a - i_c) = 0$

loop b:

 $R_2(i_b - i_a) + R_3(i_b) + R_6(i_b - i_c) = 0$

loop c:

 $R_4(i_c - i_a) + R_6(i_c - i_b) + R_5(i_c) = 0$

• solve (here just 3 equations and 3 unknowns)

Analyzing Circuits: Summary

We have seen three (of many) methods for **analyzing** circuits. Each one is based on a different set of variables:

- · currents and voltages for each element
- node voltages
- loop currents

Each requires the use of all constitutive equations.

Each provides a systematic way of identifying the required set of KVL and/or KCL equations.

Check Yourself

Determine the current I in the circuit below.

- 1. 1 A
- 2. $\frac{5}{3}$ A
- 3. −1 A
- 4. −5 A
- 5. none of the above

Common Patterns

Circuits can be simplified when two or more elements behave as a single element.

A "one-port" is a circuit that can be represented as a single element.

A one-port has two terminals. Current enters one terminal (+) and exits the other (-), producing a voltage (v) across the terminals.

Series Combinations

The series combination of two resistors is equivalent to a single resistor whose resistance is the sum of the two original resistances.

$$v = R_1 i + R_2 i$$

$$v = R_s i$$

$$R_s = R_1 + R_2$$

The resistance of a series combination is always **larger** than either of the original resistances.

Parallel Combinations

The parallel combination of two resistors is equivalent to a single resistor whose conductance (1/resistance) is the sum of the two original conductances.

$$i = \frac{c}{R_1} + \frac{c}{R_2}$$

$$i = \frac{v}{R_i}$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$$

$$R_p = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2} \equiv R_1 || R_2$$

The resistance of a parallel combination is always **smaller** than either of the original resistances.

Check Yourself

What is the equivalent resistance of the following one-port.

1. 0.5

2. 1

3. 2

4. 3

5. 5

Voltage Divider

Resistors in series act as voltage dividers.

$$I = \frac{V}{R_1 + R_2}$$

$$V_1 = R_1 I = \frac{R_1}{R_1 + R_2} V$$

$$V_2 = R_2 I = \frac{R_2}{R_1 + R_2} V$$

Current Divider

Resistors in parallel act as current dividers.

$$V = (R_1||R_2) I$$

$$I_1 = \frac{V}{R_1} = \frac{R_1 || R_2}{R_1} I = \frac{1}{R_1} \frac{R_1 R_2}{R_1 + R_2} I = \frac{R_2}{R_1 + R_2} I$$

$$I_2 = \frac{V}{R_2} = \frac{R_1 || R_2}{R_2} I = \frac{1}{R_2} \frac{R_1 R_2}{R_1 + R_2} I = \frac{R_1}{R_1 + R_2} I$$

Check Yourself

Which of the following is true?

- 1. $V_o \leq 3V$
- 2. $3V < V_o \le 6V$
- 3. $6V < V_o \le 9V$
- 4. $9V < V_o \le 12V$
- 5. $V_o > 12V$

Summary

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

We have seen three (of many) methods for **analyzing** circuits. Each one is based on a different set of variables:

- currents and voltages for each element
- node voltages
- loop currents

We can simplify analysis by recognizing common patterns:

- series and parallel combinations
- voltage and current dividers

MIT OpenCourseWar	е
http://ocw.mit.edu	

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.