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6.01: Introduction to EECS I 

Signals and Systems 

February 15, 2011 

Module 1 Summary: Software Engineering 

Focused on abstraction and modularity in software engineering. 

Topics: procedures, data structures, objects, state machines 

Lab Exercises: implementing robot controllers as state machines 

BrainSensorInput Action 

Abstraction and Modularity: Combinators 

Cascade: make new SM by cascading two SM’s 

Parallel: make new SM by running two SM’s in parallel 

Select: combine two inputs to get one output 

Themes: PCAP 

Primitives – Combination – Abstraction – Patterns 

6.01: Introduction to EECS I 

The intellectual themes in 6.01 are recurring themes in EECS: 

• design of complex systems 

• modeling and controlling physical systems 

• augmenting physical systems with computation 

• building systems that are robust to uncertainty 

Intellectual themes are developed in context of a mobile robot. 

Goal is to convey a distinct perspective about engineering. 

Module 2 Preview: Signals and Systems 

Focus next on analysis of feedback and control systems. 

Topics: difference equations, system functions, controllers. 

Lab exercises: robotic steering 

steer left 

steer left 

straight ahead? 

steer right 

steer right 

steer right 

straight ahead? 

Themes: modeling complex systems, analyzing behaviors 

Analyzing (and Predicting) Behavior 

Today we will start to develop tools to analyze and predict behavior. 

Example (design Lab 2): use sonar sensors (i.e., currentDistance) 

to move robot desiredDistance from wall. 

desiredDistance 
currentDistance 

Analyzing (and Predicting) Behavior 

Make the forward velocity proportional to the desired displacement. 

desiredDistance 
currentDistance 

>>> class wallFinder(sm.SM): 

... startState = None 

... def getNextValues(self, state, inp): 

... desiredDistance = 0.5 

... currentDistance = inp.sonars[3] 

... return (state,io.Action(fvel=?,rvel=0)) 

Find an expression for fvel. 
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Check Yourself 

desiredDistance 
currentDistance 

Which expression for fvel has the correct form? 

1. currentDistance 2. currentDistance-desiredDistance 

3. desiredDistance 4. currentDistance/desiredDistance 

5. none of the above 

Check Yourself 

Which plot best represents currentDistance? 

desiredDistance 
currentDistance 

n 

1. 

n 

2. 

n 

3. 

n 

4. 

5. none of the above 

Example: Mass and Spring 

x(t) 

y(t) 

mass & 
spring 
system 

x(t) y(t) 

t t 

Example: Tanks 

r0(t) 

r1(t) 

r2(t) 

h1(t) 

h2(t) 

tank 
system 

r0(t) r2(t) 

t t 

Example: Cell Phone System 

sound in 

sound out 

cell 
phone 
system 

sound in sound out 

t t 

Signals and Systems: Widely Applicable 

The Signals and Systems approach has broad application: electrical, 

mechanical, optical, acoustic, biological, financial, ... 

mass & 
spring 
system 

x(t) y(t) 

t t 

r0(t) 

r1(t) 

r2(t) 

h1(t) 

h2(t) tank 
system 

r0(t) r2(t) 

t t 

cell 
phone 
system 

sound in sound out 

t t 
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Signals and Systems: Modular 

The representation does not depend upon the physical substrate. 

sound in 

sound out 

cell 
phone 

tower tower 
cell 

phone 
sound 

in 

E/M optic 
fiber 

E/M sound 
out 

focuses on the flow of information, abstracts away everything else 

Signals and Systems: Hierarchical 

Representations of component systems are easily combined. 

Example: cascade of component systems 

cell 
phone 

tower tower 
cell 

phone 
sound 

in 

E/M optic 
fiber 

E/M sound 
out 

Composite system 

cell phone system sound 
in 

sound 
out 

Component and composite systems have the same form, and are 

analyzed with same methods. 

© FreeFoto.com. CC by-nc-nd. 
This content is excluded from our 
Creative Commons license. For more 

information, see http://ocw.mit.edu/fairuse. 

The Signals and Systems Abstraction 

Our goal is to develop representations for systems that facilitate 

analysis. 

system
signal 

in 
signal 
out 

Examples: 

• Does the output signal overshoot? If so, how much? 

• How long does it take for the output signal to reach its final value? 

Continuous and Discrete Time 

Inputs and outputs of systems can be functions of continuous time 

or discrete time. 

We will focus on discrete-time systems. 

Difference Equations Difference Equations 

Difference equations are an excellent way to represent discrete-time 

systems. 

Example: 

y[n] = x[n]− x[n − 1] 

Difference equations can be applied to any discrete-time system; 

they are mathematically precise and compact. 

Difference equations are mathematically precise and compact. 

Example: 

y[n] = x[n]− x[n − 1] 

Let x[n] equal the “unit sample” signal δ[n], 

1, if n = 0; 
δ[n] =  

0, otherwise.
 
x[n] = δ[n]
 

−1 0  1 2 3  4 
n 

We will use the unit sample as a “primitive” (building-block signal) 

to construct more complex signals. 
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Step-By-Step Solutions 

Difference equations are convenient for step-by-step analysis. 

Find y[n] given x[n] =  δ[n]: y[n] =  x[n] − x[n− 1] 

y[−1] = x[−1] − x[−2] = 0  − 0 = 0  

y[0] = x[0] − x[−1] = 1  − 0 = 1  

y[1] = x[1] − x[0] = 0  − 1 =  −1 

y[2] = x[2] − x[1] = 0  − 0 = 0  

y[3] = x[3] − x[2] = 0  − 0 = 0  
. . .  

x[n] =  δ[n] y[n] 

−1 0  1 2 3  4 −1 0  1 2 3  4 
n n 

Multiple Representations of Discrete-Time Systems 

Block diagrams are useful alternative representations that highlight 

visual/graphical patterns. 

Difference equation: 

y[n] =  x[n] − x[n− 1] 

Block diagram: 

Delay −1 

+x[n] y[n] 

Same input-output behavior, different strengths/weaknesses: 

• difference equations are mathematically compact 

• block diagrams illustrate signal flow paths 

Step-By-Step Solutions 

Block diagrams are also useful for step-by-step analysis. 

Represent y[n] =  x[n] − x[n− 1] with a block diagram: start “at rest” 

−1 Delay 

+x[n] y[n] 

0 

−1  0  1 2 3  4 
n 

x[n] =  δ[n] 

−1  0  1 2 3  4 
n 

y[n] 

Check Yourself 

DT systems can be described by difference equations and/or 

block diagrams. 

Difference equation: 

y[n] =  x[n] − x[n− 1] 

Block diagram: 

−1 Delay 

+x[n] y[n] 

In what ways are these representations different? 

From Samples to Signals 

Lumping all of the (possibly infinite) samples into a single object 

– the signal – simplifies its manipulation. 

This lumping is analogous to 

• representing coordinates in three-space as points 

• representing lists of numbers as vectors in linear algebra 

• creating an object in Python 

From Samples to Signals 

Operators manipulate signals rather than individual samples. 

Delay −1 

+X Y 

Nodes represent whole signals (e.g., X and Y ). 

The boxes operate on those signals: 

• Delay = shift whole signal to right 1 time step 

• Add = sum two signals 

• −1: multiply by −1 

Signals are the primitives. 

Operators are the means of combination. 
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Operator Notation: Check Yourself Operator Notation 

Symbols can now compactly represent diagrams. 

Let R represent the right-shift operator: 

Y = R{X} ≡ RX 

where X represents the whole input signal (x[n] for all n) and Y 

represents the whole output signal (y[n] for all n) 

Representing the difference machine 

Delay −1 

+X Y 

with R leads to the equivalent representation 

Y = X −RX = (1  −R) X 

Let Y = RX. Which of the following is/are true: 

1. y[n] =  x[n] for all n 

2. y[n + 1]  =  x[n] for all n 

3. y[n] =  x[n + 1]  for all n 

4. y[n − 1] = x[n] for all n 

5. none of the above 

Operator Representation of a Cascaded System 

System operations have simple operator representations. 

Cascade systems → multiply operator expressions. 

Delay −1 

+ 

Delay −1 

+X 
Y1 

Y2 

Using operator notation: 

Y1 = (1  −R) X 

Y2 = (1  −R) Y1 

Substituting for Y1: 

Y2 = (1  −R)(1 −R) X 

Operator Algebra 

Operator expressions expand and reduce like polynomials. 

Delay −1 

+ 

Delay −1 

+X 
Y1 

Y2 

Using difference equations: 

y2[n] =  y1[n] − y1[n − 1] 
= (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2]) 

= x[n] − 2x[n − 1] + x[n − 2] 

Using operator notation: 

Y2 = (1  −R) Y1 = (1  −R)(1 −R) X 

= (1  −R)2X 

= (1  − 2R+ R2) X 

Operator Approach 

Applies your existing expertise with polynomials to understand block 

diagrams, and thereby understand systems. 

Operator Algebra 

Operator notation facilitates seeing relations among systems. 

“Equivalent” block diagrams (assuming both initially at rest): 

Delay −1 

+ 

Delay −1 

+X 
Y1 

Y2 

Delay 

Delay 

−2 

+X Y 

Equivalent operator expression: 

(1 −R)(1 −R) = 1  − 2R+ R2 
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Operator Algebra Operator Algebra 

Operator notation prescribes operations on signals, not samples: 

e.g., start with X, subtract 2 times a right-shifted version of X, and 

add a double-right-shifted version of X! 

X : −1 0 1 2 3 4 5 6  
n 

−2RX : −1 0 1 2 3 4 5 6  
n 

+R2X : −1 0 1 2 3 4 5 6  
n 

y = X − 2RX +R2X : −1 0 1 2 3 4 5 6  
n 

Expressions involving R obey many familiar laws of algebra, e.g., 

commutativity. 

R(1−R)X = (1−R)RX 

This is easily proved by the definition of R, and it implies that 

cascaded systems commute (assuming initial rest) 

X 

Delay 

+ Delay Y 

−1 

is equivalent to 

X 

Delay −1 

+Delay Y 

Operator Algebra 

Multiplication distributes over addition. 

Equivalent systems 

Delay −1 

+ Delay X Y 

−1 

+ 

Delay Delay 

Delay X Y 

Equivalent operator expression: 

R(1−R) = R−R2 

Operator Algebra 

The associative property similarly holds for operator expressions. 

Equivalent systems 

X Y 

X Y 

Delay 

Delay Delay Delay −1 

2 

−1 

+ + 

Delay 

Delay 

Delay Delay −1 

2 

−1 

+ + 

Equivalent operator expression: 

(1−R)R (2−R) = (1−R) R(2−R) 

Check Yourself 

How many of the following systems are equivalent? 

Delay 2 + Delay 2 +X Y 

Delay + Delay 4 +X Y 

Delay 4 + 

Delay 

+X Y 

Explicit and Implicit Rules 

Recipes versus constraints. 

X 

Delay 

+ Y 

Y = (1−R)X 
−1 

Recipe: output signal equals difference between input signal and 

right-shifted input signal. 

X 

Delay 

+ Y 
Y = RY +X 

(1−R)Y = X 

Constraints: find the signal Y such that the difference between Y 

and RY is X. But how? 
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Example: Accumulator 

Try step-by-step analysis: it always works. Start “at rest.” 

+ 

Delay 

x[n] y[n] 

−1  0  1 2 3  4 
n 

x[n] =  δ[n] 

−1  0  1 2 3  4 
n 

y[n] 

Find y[n] given x[n] =  δ[n]: y[n] =  x[n] +  y[n − 1] 

y[0] = x[0] + y[−1] = 1  +  0 = 1  

y[1] = x[1] + y[0] = 0  +  1 = 1  

y[2] = x[2] + y[1] = 0  +  1 = 1  
. . .  

Persistent response to a transient input! 

Example: Accumulator 

The response of the accumulator system could also be generated by 

a system with infinitely many paths from input to output, each with 

one unit of delay more than the previous. 

Delay 

Delay Delay 

Delay Delay Delay 

+ 

... ... 

X Y 

Y = (1  +  R+ R2 + R3 + · · ·) X 

Example: Accumulator 

These systems are equivalent in the sense that if each is initially at 

rest, they will produce identical outputs from the same input. 

(1 −R) Y1 = X1 ⇔ ? Y2 = (1 +  R+ R2 + R3 + · · ·) X2 

Proof: Assume X2 = X1: 

Y2 = (1 +  R+ R2 + R3 + · · ·) X2
 

= (1 +  R+ R2 + R3 + · · ·) X1
 

= (1 +  R+ R2 + R3 + · · ·) (1  −R) Y1
 

= ((1 + R+ R2 + R3 + · · ·) − (R+ R2 + R3 + · · ·)) Y1
 

= Y1
 

It follows that Y2 = Y1. 

Example: Accumulator 

The system functional for the accumulator is the reciprocal of a 

polynomial in R. 

Delay 

+X Y 

(1 −R) Y = X 

The product (1 −R) × (1 + R+ R2 + R3 + · · ·) equals 1. 

Therefore the terms (1 −R) and (1 + R+ R2 + R3 + · · ·) are reciprocals. 

Thus we can write 

Y 
X 

= 
1 

1 −R  
= 1  +  R+ R2 + R3 + R4 + · · ·  

Example: Accumulator Check Yourself 

The reciprocal of 1−R can also be evaluated using synthetic division. 

1 +R +R2 +R3 + · · ·  
1 −R  1 

1 −R 
R 
R −R2 

R2 

R2 −R3 

R3 

R3 −R4 

· · ·  
Therefore 

= 1 +  R+ R2 + R3 + R4 + · · ·  1 −R  

A system is described by the following operator expression: 

Y 
X 

= 
1 

1 + 2R 
. 

Determine the output of the system when the input is a 

unit sample. 
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Linear Difference Equations with Constant Coefficients 

Any system composed of adders, gains, and delays can be repre­

sented by a difference equation. 

y[n] +  a1y[n − 1] + a2y[n − 2] + a3y[n − 3] + · · · 
  

= b0x[n] +  b1x[n − 1] + b2x[n − 2] + b3x[n − 3] + · · · 
  

Such a system can also be represented by an operator expression. 

(1 + a1R+ a2R2 + a3R3 + · · ·) Y = (b0 + b1R+ b2R2 + b3R3 + · · ·) X 

We will see that this correspondence provides insight into behavior. 

This correspondence also reduces algebraic tedium. 

Check Yourself 

Determine the difference equation that relates x[·] and y[·]. 

Delay 

Delay 

+x[n] y[n] 

1. y[n] =  x[n − 1] + y[n − 1] 
2. y[n] =  x[n − 1] + y[n − 2] 
3. y[n] =  x[n − 1] + y[n − 1] + y[n − 2] 
4. y[n] =  x[n − 1] + y[n − 1] − y[n − 2] 
5. none of the above 

Signals and Systems 

Multiple representations of discrete-time systems. 

Difference equations: mathematically compact. 

y[n] =  x[n] − x[n − 1] 

Block diagrams: illustrate signal flow paths. 

Delay −1 

+x[n] y[n] 

Operator representations: analyze systems as polynomials. 

Y = (1  −R) X 

Labs: representing signals in python 

controlling robots and analyzing their behaviors. 
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