
6.01: Introduction to EECS I Lecture 3 February 15, 2011

6.01: Introduction to EECS I

Signals and Systems

February 15, 2011

Module 1 Summary: Software Engineering

Focused on abstraction and modularity in software engineering.

Topics: procedures, data structures, objects, state machines

Lab Exercises: implementing robot controllers as state machines

BrainSensorInput Action

Abstraction and Modularity: Combinators

Cascade: make new SM by cascading two SM’s

Parallel: make new SM by running two SM’s in parallel

Select: combine two inputs to get one output

Themes: PCAP

Primitives – Combination – Abstraction – Patterns

6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in EECS:

• design of complex systems

• modeling and controlling physical systems

• augmenting physical systems with computation

• building systems that are robust to uncertainty

Intellectual themes are developed in context of a mobile robot.

Goal is to convey a distinct perspective about engineering.

Module 2 Preview: Signals and Systems

Focus next on analysis of feedback and control systems.

Topics: difference equations, system functions, controllers.

Lab exercises: robotic steering

steer left

steer left

straight ahead?

steer right

steer right

steer right

straight ahead?

Themes: modeling complex systems, analyzing behaviors

Analyzing (and Predicting) Behavior

Today we will start to develop tools to analyze and predict behavior.

Example (design Lab 2): use sonar sensors (i.e., currentDistance)

to move robot desiredDistance from wall.

desiredDistance
currentDistance

Analyzing (and Predicting) Behavior

Make the forward velocity proportional to the desired displacement.

desiredDistance
currentDistance

>>> class wallFinder(sm.SM):

... startState = None

... def getNextValues(self, state, inp):

... desiredDistance = 0.5

... currentDistance = inp.sonars[3]

... return (state,io.Action(fvel=?,rvel=0))

Find an expression for fvel.

1

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Check Yourself

desiredDistance
currentDistance

Which expression for fvel has the correct form?

1. currentDistance 2. currentDistance-desiredDistance

3. desiredDistance 4. currentDistance/desiredDistance

5. none of the above

Check Yourself

Which plot best represents currentDistance?

desiredDistance
currentDistance

n

1.

n

2.

n

3.

n

4.

5. none of the above

Example: Mass and Spring

x(t)

y(t)

mass &
spring
system

x(t) y(t)

t t

Example: Tanks

r0(t)

r1(t)

r2(t)

h1(t)

h2(t)

tank
system

r0(t) r2(t)

t t

Example: Cell Phone System

sound in

sound out

cell
phone
system

sound in sound out

t t

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical,

mechanical, optical, acoustic, biological, financial, ...

mass &
spring
system

x(t) y(t)

t t

r0(t)

r1(t)

r2(t)

h1(t)

h2(t) tank
system

r0(t) r2(t)

t t

cell
phone
system

sound in sound out

t t

2

�

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Signals and Systems: Modular

The representation does not depend upon the physical substrate.

sound in

sound out

cell
phone

tower tower
cell

phone
sound

in

E/M optic
fiber

E/M sound
out

focuses on the flow of information, abstracts away everything else

Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems

cell
phone

tower tower
cell

phone
sound

in

E/M optic
fiber

E/M sound
out

Composite system

cell phone system sound
in

sound
out

Component and composite systems have the same form, and are

analyzed with same methods.

© FreeFoto.com. CC by-nc-nd.
This content is excluded from our
Creative Commons license. For more

information, see http://ocw.mit.edu/fairuse.

The Signals and Systems Abstraction

Our goal is to develop representations for systems that facilitate

analysis.

system
signal

in
signal
out

Examples:

• Does the output signal overshoot? If so, how much?

• How long does it take for the output signal to reach its final value?

Continuous and Discrete Time

Inputs and outputs of systems can be functions of continuous time

or discrete time.

We will focus on discrete-time systems.

Difference Equations Difference Equations

Difference equations are an excellent way to represent discrete-time

systems.

Example:

y[n] = x[n]− x[n − 1]

Difference equations can be applied to any discrete-time system;

they are mathematically precise and compact.

Difference equations are mathematically precise and compact.

Example:

y[n] = x[n]− x[n − 1]

Let x[n] equal the “unit sample” signal δ[n],

1, if n = 0;
δ[n] =

0, otherwise.

x[n] = δ[n]

−1 0 1 2 3 4
n

We will use the unit sample as a “primitive” (building-block signal)

to construct more complex signals.

3

http://ocw.mit.edu/fairuse

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Step-By-Step Solutions

Difference equations are convenient for step-by-step analysis.

Find y[n] given x[n] = δ[n]: y[n] = x[n] − x[n− 1]

y[−1] = x[−1] − x[−2] = 0 − 0 = 0

y[0] = x[0] − x[−1] = 1 − 0 = 1

y[1] = x[1] − x[0] = 0 − 1 = −1

y[2] = x[2] − x[1] = 0 − 0 = 0

y[3] = x[3] − x[2] = 0 − 0 = 0
. . .

x[n] = δ[n] y[n]

−1 0 1 2 3 4 −1 0 1 2 3 4
n n

Multiple Representations of Discrete-Time Systems

Block diagrams are useful alternative representations that highlight

visual/graphical patterns.

Difference equation:

y[n] = x[n] − x[n− 1]

Block diagram:

Delay −1

+x[n] y[n]

Same input-output behavior, different strengths/weaknesses:

• difference equations are mathematically compact

• block diagrams illustrate signal flow paths

Step-By-Step Solutions

Block diagrams are also useful for step-by-step analysis.

Represent y[n] = x[n] − x[n− 1] with a block diagram: start “at rest”

−1 Delay

+x[n] y[n]

0

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Check Yourself

DT systems can be described by difference equations and/or

block diagrams.

Difference equation:

y[n] = x[n] − x[n− 1]

Block diagram:

−1 Delay

+x[n] y[n]

In what ways are these representations different?

From Samples to Signals

Lumping all of the (possibly infinite) samples into a single object

– the signal – simplifies its manipulation.

This lumping is analogous to

• representing coordinates in three-space as points

• representing lists of numbers as vectors in linear algebra

• creating an object in Python

From Samples to Signals

Operators manipulate signals rather than individual samples.

Delay −1

+X Y

Nodes represent whole signals (e.g., X and Y).

The boxes operate on those signals:

• Delay = shift whole signal to right 1 time step

• Add = sum two signals

• −1: multiply by −1

Signals are the primitives.

Operators are the means of combination.

4

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Operator Notation: Check Yourself Operator Notation

Symbols can now compactly represent diagrams.

Let R represent the right-shift operator:

Y = R{X} ≡ RX

where X represents the whole input signal (x[n] for all n) and Y

represents the whole output signal (y[n] for all n)

Representing the difference machine

Delay −1

+X Y

with R leads to the equivalent representation

Y = X −RX = (1 −R) X

Let Y = RX. Which of the following is/are true:

1. y[n] = x[n] for all n

2. y[n + 1] = x[n] for all n

3. y[n] = x[n + 1] for all n

4. y[n − 1] = x[n] for all n

5. none of the above

Operator Representation of a Cascaded System

System operations have simple operator representations.

Cascade systems → multiply operator expressions.

Delay −1

+

Delay −1

+X
Y1

Y2

Using operator notation:

Y1 = (1 −R) X

Y2 = (1 −R) Y1

Substituting for Y1:

Y2 = (1 −R)(1 −R) X

Operator Algebra

Operator expressions expand and reduce like polynomials.

Delay −1

+

Delay −1

+X
Y1

Y2

Using difference equations:

y2[n] = y1[n] − y1[n − 1]
= (x[n] − x[n − 1]) − (x[n − 1] − x[n − 2])

= x[n] − 2x[n − 1] + x[n − 2]

Using operator notation:

Y2 = (1 −R) Y1 = (1 −R)(1 −R) X

= (1 −R)2X

= (1 − 2R+ R2) X

Operator Approach

Applies your existing expertise with polynomials to understand block

diagrams, and thereby understand systems.

Operator Algebra

Operator notation facilitates seeing relations among systems.

“Equivalent” block diagrams (assuming both initially at rest):

Delay −1

+

Delay −1

+X
Y1

Y2

Delay

Delay

−2

+X Y

Equivalent operator expression:

(1 −R)(1 −R) = 1 − 2R+ R2

5

� � � �

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Operator Algebra Operator Algebra

Operator notation prescribes operations on signals, not samples:

e.g., start with X, subtract 2 times a right-shifted version of X, and

add a double-right-shifted version of X!

X : −1 0 1 2 3 4 5 6
n

−2RX : −1 0 1 2 3 4 5 6
n

+R2X : −1 0 1 2 3 4 5 6
n

y = X − 2RX +R2X : −1 0 1 2 3 4 5 6
n

Expressions involving R obey many familiar laws of algebra, e.g.,

commutativity.

R(1−R)X = (1−R)RX

This is easily proved by the definition of R, and it implies that

cascaded systems commute (assuming initial rest)

X

Delay

+ Delay Y

−1

is equivalent to

X

Delay −1

+Delay Y

Operator Algebra

Multiplication distributes over addition.

Equivalent systems

Delay −1

+ Delay X Y

−1

+

Delay Delay

Delay X Y

Equivalent operator expression:

R(1−R) = R−R2

Operator Algebra

The associative property similarly holds for operator expressions.

Equivalent systems

X Y

X Y

Delay

Delay Delay Delay −1

2

−1

+ +

Delay

Delay

Delay Delay −1

2

−1

+ +

Equivalent operator expression:

(1−R)R (2−R) = (1−R) R(2−R)

Check Yourself

How many of the following systems are equivalent?

Delay 2 + Delay 2 +X Y

Delay + Delay 4 +X Y

Delay 4 +

Delay

+X Y

Explicit and Implicit Rules

Recipes versus constraints.

X

Delay

+ Y

Y = (1−R)X
−1

Recipe: output signal equals difference between input signal and

right-shifted input signal.

X

Delay

+ Y
Y = RY +X

(1−R)Y = X

Constraints: find the signal Y such that the difference between Y

and RY is X. But how?

6

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Example: Accumulator

Try step-by-step analysis: it always works. Start “at rest.”

+

Delay

x[n] y[n]

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n] + y[n − 1]

y[0] = x[0] + y[−1] = 1 + 0 = 1

y[1] = x[1] + y[0] = 0 + 1 = 1

y[2] = x[2] + y[1] = 0 + 1 = 1
. . .

Persistent response to a transient input!

Example: Accumulator

The response of the accumulator system could also be generated by

a system with infinitely many paths from input to output, each with

one unit of delay more than the previous.

Delay

Delay Delay

Delay Delay Delay

+

... ...

X Y

Y = (1 + R+ R2 + R3 + · · ·) X

Example: Accumulator

These systems are equivalent in the sense that if each is initially at

rest, they will produce identical outputs from the same input.

(1 −R) Y1 = X1 ⇔ ? Y2 = (1 + R+ R2 + R3 + · · ·) X2

Proof: Assume X2 = X1:

Y2 = (1 + R+ R2 + R3 + · · ·) X2

= (1 + R+ R2 + R3 + · · ·) X1

= (1 + R+ R2 + R3 + · · ·) (1 −R) Y1

= ((1 + R+ R2 + R3 + · · ·) − (R+ R2 + R3 + · · ·)) Y1

= Y1

It follows that Y2 = Y1.

Example: Accumulator

The system functional for the accumulator is the reciprocal of a

polynomial in R.

Delay

+X Y

(1 −R) Y = X

The product (1 −R) × (1 + R+ R2 + R3 + · · ·) equals 1.

Therefore the terms (1 −R) and (1 + R+ R2 + R3 + · · ·) are reciprocals.

Thus we can write

Y
X

=
1

1 −R
= 1 + R+ R2 + R3 + R4 + · · ·

Example: Accumulator Check Yourself

The reciprocal of 1−R can also be evaluated using synthetic division.

1 +R +R2 +R3 + · · ·
1 −R 1

1 −R
R
R −R2

R2

R2 −R3

R3

R3 −R4

· · ·
Therefore

= 1 + R+ R2 + R3 + R4 + · · · 1 −R

A system is described by the following operator expression:

Y
X

=
1

1 + 2R
.

Determine the output of the system when the input is a

unit sample.

7

1

6.01: Introduction to EECS I Lecture 3 February 15, 2011

Linear Difference Equations with Constant Coefficients

Any system composed of adders, gains, and delays can be repre­

sented by a difference equation.

y[n] + a1y[n − 1] + a2y[n − 2] + a3y[n − 3] + · · ·

= b0x[n] + b1x[n − 1] + b2x[n − 2] + b3x[n − 3] + · · ·

Such a system can also be represented by an operator expression.

(1 + a1R+ a2R2 + a3R3 + · · ·) Y = (b0 + b1R+ b2R2 + b3R3 + · · ·) X

We will see that this correspondence provides insight into behavior.

This correspondence also reduces algebraic tedium.

Check Yourself

Determine the difference equation that relates x[·] and y[·].

Delay

Delay

+x[n] y[n]

1. y[n] = x[n − 1] + y[n − 1]
2. y[n] = x[n − 1] + y[n − 2]
3. y[n] = x[n − 1] + y[n − 1] + y[n − 2]
4. y[n] = x[n − 1] + y[n − 1] − y[n − 2]
5. none of the above

Signals and Systems

Multiple representations of discrete-time systems.

Difference equations: mathematically compact.

y[n] = x[n] − x[n − 1]

Block diagrams: illustrate signal flow paths.

Delay −1

+x[n] y[n]

Operator representations: analyze systems as polynomials.

Y = (1 −R) X

Labs: representing signals in python

controlling robots and analyzing their behaviors.

8

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

