
Design Lab 3 6.01 – Fall 2011

All Carrot, No Stick 

Goals: The overall goal of this lab is to build a robust capability for the robot to 
drive a route made up of linear path segments. We will do this in three 
stages: 
• Implement a state machine that drives the robot in a straight line to a 

goal specified in the coordinate system of its odometry. 
• Make the robot traverse a sequence of linear segments by cascading a 

machine that generates target points with the machine that drives to a 

target. 
• Make the robot less of a danger to humanity by adding a ’reflex’ that 

will make the robot stop when its path is blocked, and wait until it is 

unblocked, then resume its trajectory. 

1 Materials 
This lab should be done with a partner. Each partnership should have a lab laptop or a personal 
laptop that reliably runs soar. Do athrun 6.01 getFiles to get the files for this lab, which will 
be in Desktop/6.01/designLab03/; they will provide you with these resources: 

Resources: 
• moveBrainSkeleton.py: main brain file, which imports the next two 

files. 
• ffSkeleton.py: template for your implementation of a figure-following 

state machine. 
• dynamicMoveToPointSkeleton.py: template for your implementa­

tion of a behavior that drives the robot to a specified point. 
• testFF.py: procedure for testing figure follower in idle. Not used 

when the brain is run. 
• testMove.py: procedure for testing move to point in idle. Not used 

when the brain is run. 

Be sure to mail the code and data you have to your partner. You will both need to bring it 
with you to your first interview. 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].



1



Design Lab 3	 6.01 Fall 2011 

For this week, you should read all of chapter 4 of the Course Notes. But before starting this 
lab, please read: Section 4.2.1 (Cascade combination), Section 4.2.2 (Parallel combination), and 
Section 4.2.6 (Switch and multiplex). 

2 Driven 

Objective:	 Make a robot brain that can follow a path that is composed of a sequence 
of straight line segments. 

Let us explore how state machines can be composed, by creating a robot brain made of a state 
machine that is itself composed of simpler state machines, as shown in Figure 1. 

Design Lab 3 6.01 Spring 2011

2

3 Driven
Our goal is to make a robot brain that can follow a path that is composed of a sequence of straight
line segments. We will construct this brain as a state machine that is itself composed of simpler
state machines, as shown in Figure 1.

GoalGenerator

DynamicMoveToPoint
io.sensorInput

io.Action
util.Point

Figure 1 Architecture for robot brain (which is a state machine) constructed from simpler state
machines:

• A GoalGenerator is a state machine. On each step, the input is an instance of io.SensorInput
(which contains the robot’s sonar and odometry readings) and the output is an instance of
util.Point, which represents the target that the robot should drive toward.

• A DynamicMoveToPoint state machine takes an input that is a tuple containing two items:
the first is an instance of util.Point and the second is an instance of io.SensorInput. On each
step, the state machine generates one instance of io.Action, which specifies a single step toward
the specified util.Point.

Do not define any new classes for this part!Step 1.

Use sm.Cascade, sm.Parallel, sm.Constant and sm.Wire (which you can read about in the
online software documentation, available from the Reference tab of the 6.01 home page, as well as
in the readings) to construct a composite machine shown in Figure 1.

For now, make a GoalGenerator state machine (Figure 1) that always outputs the constant point
util.Point(1.0, 0.5). Also, create a DynamicMoveToPoint state machine (Figure 1) by mak-
ing an instance of the dynamicMoveToPointSkeleton.DynamicMoveToPoint class.

Type your code for constructing this composite machine into moveBrainSkeleton.py, in place
of None at the line

mySM = None
You can test your composite machine by running the brain in soar. Select the bigEmptyWorld.py
world. Each soar step should print a message (but there will be no motion of the robot). In later
steps, you will replace the code that generates these messages with code that moves the robot.

3.1 Odometry
Before we implement the module that controls the robot, we have to understand coordinate
frames and how the robot reports its current location.

The robot has shaft encoders on each of its drive wheels that count (fractions of) rotations of the
wheels. The robot processor uses these encoder counts to update an estimated pose (a term that
means both position and orientation) of the robot in a global reference frame. This figure shows
the reference frame in which the robot’s odometry is reported.

Figure 1 Architecture for robot brain (which is a state machine) constructed from two simpler 
state machines. 

The two simpler state machines we shall construct are: 
A GoalGenerator is a state machine. On each step, the input is an instance of io.SensorInput• 
(which contains the robot’s sonar and odometry readings) and the output is an instance of 
util.Point, which represents the target that the robot should drive toward. 
A DynamicMoveToPoint state machine takes an input that is a tuple containing two items: • 
the first is an instance of util.Point and the second is an instance of io.SensorInput. On 
each step, the state machine generates one instance of io.Action, which specifies a single step 
toward the specified util.Point. 

Step 1. Detailed guidance : (Do not define any new classes for this part!) 
Use sm.Cascade, sm.Parallel, sm.Constant and sm.Wire (which you can read about in the 
online software documentation, available from the Reference tab of the 6.01 home page, as well as 
in the readings) to construct a composite machine shown in Figure 1. 
For now, make a state machine (which serves the role of a GoalGenerator in Figure 1) that 
always outputs the constant point util.Point(1.0, 0.5). Also, create a DynamicMove-
ToPoint state machine (Figure 1) by making an instance of the dynamicMoveToPointSkele­
ton.DynamicMoveToPoint class. 
Type your code for constructing this composite machine into moveBrainSkeleton.py, in place 
of None at the line 

mySM = None 

You can test your composite machine by running moveBrainSkeleton.py in soar. Select the 
bigEmptyWorld.py world. Each soar step should print a message (but there will be no motion of 

2


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/index.html
http:moveBrainSkeleton.py


Design Lab 3 6.01 Fall 2011 

the robot). In later steps, you will replace the code that generates these messages with code that 
moves the robot. 

2.1 Odometry 

Before we implement the module that controls the robot, we have to understand coordinate frames 
and how the robot reports its current location. 

The robot has shaft encoders on each of its drive wheels that count (fractions of) rotations of the 
wheels. The robot processor uses these encoder counts to update an estimated pose (a term that 
means both position and orientation) of the robot in a global reference frame. This figure shows 
the reference frame in which the robot’s odometry is reported. 

X 

Y 

Startup After forward
motion

After rotation
and forward motion

θ

When the robot is turned on, the frame is initialized to have its origin at the robot’s center and 
the positive x axis pointing out the front of the robot. You can now think of that frame as being 
painted on the ground; as you move or rotate the robot, it keeps reporting its pose in that original 
frame. The pose has x, y, and θ components: x and y are its location, in meters, and θ is its rotation 
to the left, in radians. 

Note that the pose reading doesn’t change if you pick up the real robot and move it without the 
wheels turning. It only knows that it has moved because of the turning of the wheels. And re­
member that the odometry is far from perfect: the wheels slip and the error (especially rotational 
error) compounds over time. 

2.2 Utilities 

We will represent robot poses using the util.Pose class, which you can read about in the online 
software documentation. The util module also defines a class util.Point for representing 
points in 2D space. Assume that p0 = util.Point(x0,y0) and p1 = util.Point(x1,y1), 
then 

p0.angleTo(p1) returns the angle (in radians) between the x-axis and the vector from p0 to • 
p1, 
p0.distance(p1) returns the Euclidean distance between p0 and p1, and • 
p0.isNear(p1, distEps) returns a boolean equal to p0.distance(p1)<distEps.• 

Assume that pose0 = util.Pose(x0,y0,theta0), then


pose0.point() returns a point equal to util.Point(x0,y0).
• 

3


http://ocw.mit.edu/ans7870/6/6.01sc/documentation/index.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/index.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util-module.html


Design Lab 3	 6.01 Fall 2011


These procedures may also be useful: 
util.nearAngle(angle1, angle2, angleEps),• 

util.fixAnglePlusMinusPi(angle), and • 

util.clip(value, minValue, maxValue).• 

For reference, you should also consult the Lab Infrastructure Guide . It’s a good place to 
go to remind yourself about how robots and brains work. 

Warning! Be careful with angle arithmetic. In particular, notice that π − � (say 179◦) is very 
close to −π + � (say −179◦), but subtracting the numbers yields 2π − 2� (say 358◦)! Use 
fixAnglePlusMinusPi to convert angles near 2π (360◦) to equivalent angles near 0. Use 
nearAngle to compare angles. 
All of our angle-manipulation procedures represent angles in radians. 

2.3 Driving to a point 

Objective:	 Implement the DynamicMoveToPoint state machine, which directs the ro­
bot to perform an action to reach a goal Point. 

Detailed guidance : 

Remember that the input to the DynamicMoveToPoint state machine is a tuple (goalPoint, 
sensors), where 

goalPoint is an instance of util.Point. This point specifies where the robot should drive (in • 
the coordinate frame of the odometry).

sensors is an instance of io.SensorInput. You can get the current odometry value with sen­
• 
sors.odometry, which is an instance of util.Pose. 

The output of the DynamicMoveToPoint state machine should be an instance of io.Action that 
specifies the action to be taken by the robot during its next step. For example, to create an ac­
tion with forward velocity 0.2 m/s and rotational velocity 0.1 radians/s, the output should be 
io.Action(fvel=0.2, rvel=0.1). 

The robot should follow a (nearly) straight line from its current position to its goal point. 

Step 2.	 Determine the action that should be output by the DynamicMoveToPoint state machine for the 
following input conditions. (Answers can simple commands such as ’move forward’ or ’rotate 
left’). 

4




Design Lab 3 6.01 Fall 2011


Design Lab 3 6.01 Spring 2011

4

Warning! Be careful with angle arithmetic. In particular, notice that 179◦ is very close to
−179◦, but subtracting the numbers yields 358◦! Use fixAnglePlusMinusPi to convert
angles near 360◦ to equivalent angles near 0◦. Use nearAngle to compare angles.

All of our angle-manipulation procedures represent angles in radians.

3.3 Driving to a point
Now, we need to implement the DynamicMoveToPoint state machine. Remember that the input
to this state machine is a tuple (goalPoint, sensors), where

• goalPoint is an instance of util.Point. This point specifies where the robot should drive (in
the coordinate frame of the odometry).

• sensors is an instance of io.SensorInput. You can get the current odometry value with
sensors.odometry, which is an instance of util.Pose.

The output of the DynamicMoveToPoint state machine should be an instance of io.Action that
specifies the action to be taken by the robot during its next step. For example, to create an ac-
tion with forward velocity 0.2 m/s and rotational velocity 0.1 radians/s, the output should be
io.Action(fvel=0.2, rvel=0.1).

The robot should follow a (nearly) straight line from its current position to its goal point.

Determine the action that should be output by the DynamicMoveToPoint state machine for theStep 2.
following input conditions. (Answers can simple commands such as ’move forward’ or ’rotate
left’).

Current robot pose goalPoint Action

(0.0, 0.0, 0.0)

(0.0, 0.0, π/2)

(0.0, 0.0, tan−1 0.5)

(1.0001, 0.4999, 0.0)

(1.0, 0.5)

(1.0, 0.5)

(1.0, 0.5)

(1.0, 0.5)

Think of a strategy for implementing the DynamicMoveToPoint state machine. Explain how that
strategy will drive the robot to the goal point. The output of your state machine should depend
only on the input; it doesn’t need to use the state.

Think of a strategy for implementing the DynamicMoveToPoint state machine. Explain how that 
strategy will drive the robot to the goal point. The output of your state machine should depend 
only on the input; it doesn’t need to use the state. 

Checkoff 1. Wk.3.2.1: Explain your strategy for implementing this behavior and your 
answers to the questions above to a staff member. 

Step 3. Write code to implement your strategy in the file dynamicMoveToPointSkeleton.py. 
First, test your code in idle, as follows. Open the file dynamicMoveToPointSkeleton.py,• 
comment out 

from soar.io import io 
and uncomment 

import lib601.io as io 
Now, test the code in idle, by running the testMove procedure from testMove.py.• 

Check Yourself 1. Be sure you understand what the answers to the test cases in this file 
ought to be, and that your code is generating them correctly. 

After your code works in idle, go back to soar’s version of io.py by editing • 
dynamicMoveToPointSkeleton.py and commenting out


import lib601.io as io

and uncommenting 

from soar.io import io 
Now, test it using soar, by running moveBrainSkeleton.py in the simulated world bigEmp­• 
tyWorld.py. If you get an error message saying ’Not connected to soar.’, you need to change 
the io import statement as described above. Note that if you drag the robot around with your 
mouse, the robot won’t know that it has been moved. 

For help in debugging, find the line verbose = False in the brain and change it to verbose = 
True; that will cause soar to print out a lot of information on each step of the state machine that 
controls the brain. 

5


http:dynamicMoveToPointSkeleton.py
http:dynamicMoveToPointSkeleton.py
http:testMove.py
http:tyWorld.py


Design Lab 3	 6.01 Fall 2011


Check Yourself 2. The robot always starts with odometry reading (0, 0, 0), so it ought to move 
to somewhere close to the point (1.0, 0.5) and stop. 

3 Hip to be Square


Objective: Make the robot move in a square. Accomplish this (and other cool robot 
moves) by defining a new state machine class FollowFigure, which serves 
the role of being a GoalGenerator. 

When we initialize the FollowFigure state machine, we will give it a list of way points, which are 
points that define a sequence of linear segments that the robot should traverse. The job of Follow-
Figure is to take instances of io.SensorInput as input and generate instances of util.Point as 
output; it should start out by generating the first point in the input sequence as output, and do that 
until the robot’s actual pose (found as sensorInput.odometry) is near that point; once the robot 
has gotten near the target point, the machine should switch to generating the next target point 
as output, etc. Even after the robot gets near the final point, the machine should just continue to 
generate that point as output. 

So, for example, if we were to use the FollowFigure instance below as our target generator, it 
should cause the robot to move in a square. 

squarePoints = [util.Point(0.5, 0.5), util.Point(0.0, 1.0), 
util.Point(-0.5, 0.5), util.Point(0.0, 0.0)] 

FollowFigure(squarePoints) 

If the robot is trying to follow the square above, and the FollowFigure state machine starts in its 
start state and sees odometry poses as input in the following sequence, what should its next state 
and output be on each step? 

Design Lab 3 6.01 Spring 2011

6

machine should switch to generating the next target point as output, etc. Even after the robot gets
near the final point, the machine should just continue to generate that point as output.

So, for example, if we were to use the FollowFigure instance below as our target generator, it
should cause the robot to move in a square.

squarePoints = [util.Point(0.5, 0.5), util.Point(0.0, 1.0),
util.Point(-0.5, 0.5), util.Point(0.0, 0.0)]

FollowFigure(squarePoints)

If the robot is trying to follow the square above, and the FollowFigure state machine starts in its
start state and sees odometry poses as input in the following sequence, what should its next state
and output be on each step?

Current robot pose State Target point

(0.0, 0.0, 0.0)

(0.0, 1.0, 0.0)

(0.499, 0.501, 2.0)

(2.0, 3.0, 4.0)

Define your FollowFigure state machine class in ffSkeleton.py. Test it in idle by running theStep 4.
testFF procedure in testFF.py, which contains the test cases shown above.

Substitute an instance of the FollowFigure class for the GoalGenerator into the overall controlStep 5.
architecture in moveBrainSkeleton.py, and debug it in bigEmptyWorld.py. Instead of going
in a square, you could have your robot do a cool dance!

Checkoff 2. Show the slime trail resulting from the simulated robot moving in a square
or other interesting figure to a staff member. Explain why it has the shape
it does. Mail the code you have so far to your partner.

5 Avoiding Pedestrians
Your simulated robot, as it is currently constructed, tries to follow the specified figure and com-
pletely ignores its sonar sensors. We would like to define a new behavior that tries to follow the
figure, but that monitors the front sonars and if any of them gets a reading less than 0.3, stops
until the obstacle disappears, and then continues to follow the figure.

Use the sm.Switch state-machine combinator to make a robot that stops for pedestrians. ReadStep 6.
about Switch in the readings (see exercise 4.11 on page 148 for an example). Remember that

Detailed guidance : 

Step 4.	 Define your FollowFigure state machine class in ffSkeleton.py. Test it in idle by running the 
testFF procedure in testFF.py, which contains the test cases shown above. 

6




Design Lab 3	 6.01 Fall 2011


Step 5.	 Substitute an instance of the FollowFigure class for the GoalGenerator into the overall control 
architecture in moveBrainSkeleton.py, and debug it in bigEmptyWorld.py. Instead of going 
in a square, you could have your robot do a cool dance! 

Checkoff 2. Wk.3.2.2: Show the slime trail resulting from the simulated robot moving 
in a square or other interesting figure to a staff member. Explain why it has 
the shape it does. Take a screenshot of the slime trail and save it for your 
interview. Mail the code and slime trail you have so far, to your partner. 

4 Avoiding Pedestrians 

Objective:	 Your simulated robot, as it is currently constructed, tries to follow the spec­
ified figure and completely ignores its sonar sensors. We would like to de­
fine a new behavior that tries to follow the figure, but that monitors the 
front sonars and if any of them gets a reading less than 0.3, stops until the 
obstacle disappears, and then continues to follow the figure. 

Detailed guidance : 

Step 6.	 Use the sm.Switch state-machine combinator to make a robot that stops for pedestrians. Read 
about Switch in Section 4.2.6 of the readings. Remember that the action io.Action() will cause 
the robot to stop. This should take a very small amount of additional code. Do not change your 
definition of DynamicMoveToPoint. 

You can test this brain in simulation by dragging the robot around; its odometry reading won’t 
reflect that it has been dragged (it is as if you picked the robot up and ’kidnapped it’) so if you 
move it in front of a wall it should stop; and if you drag it away it should start to move again. 

Checkoff 3. Wk.3.2.3: Demonstrate your safe figure-follower to a staff member. Mail 
your code to your partner. 

Optional: Do it on a real robot. Try not to run over a staff member. 

5 I am a ballerina 
Replace squarePoints in your figure follower with secretDance, to have your robot gracefully 
dance the pattern of a secret message. It may take a while... 

7




MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

