
Problem Wk.3.3.2: Indexing Nested Lists


It would be handy to have a procedure that allows accessing lists that are nested to 
arbitrary depth. It would take a nested list and some sort of an index, and return the 
part of the list at that index (which could be a list or a primitive type such as a number 
or a string). Consider the nested list:

 nested = \

 [[[1, 2],


3],

[4,

[5, 6]],


7,

[8, 9, 10]]


To select the element 9 out of it, we need to do something like

 nested[3][1] 

However, note that the level of nesting of the element we want shows up in the 
expression. If we wanted to get the element 5, we would need:

 nested[1][1][0] 

In this way, we cannot write a general procedure that takes the location of an element 
in the list and gets us the element. We want you to write a recursive procedure 
recursiveRef that would work as follows:

 >>> recursiveRef(nested, [3, 1])

9


 >>> recursiveRef(nested, [1, 1, 0])

5


 >>> recursiveRef(nested, [1, 1])

[5, 6]


Note that the indices are lists of integers. 

Think about what the base case for the recursion should be? Hint: What should be the 
value of recursiveRef(anything, [])? 

Assume that the indices are always valid, so you don't have to do any error checking. 

The tests are random, so Check more than once before Submit. 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

