
BA2: No transaction fee; 1% interest per time step.

class BA2(sm.SM):
startState = 0

 def getNextValues(self, state, inp):
newState = state * 1.01 + inp
return (newState, newState)

Problem Wk.3.1.4: Combining accounts

Consider two different kinds of bank accounts:

BA1: Fee of $100 on every (non-zero) deposit and withdrawal; 2% interest per
time step.

class BA1(sm.SM):
startState = 0

 def getNextValues(self, state, inp):
if inp != 0:

newState = state * 1.02 + inp - 100
else:

 newState = state * 1.02
 return (newState, newState)

Part 1: Maximize

Make a state machine that computes the balances of both types of accounts, but whose
output is the maximum of the two balances.

The input to the state machine is a number (positive numbers are deposits, negative
numbers are withdrawals); the output is a number that represents the maximum of the
two balances.

Start by constructing a state machine whose input is a number and whose output is a
tuple with two balances: the balance an account of the first type would have had with
the input and the balance an account of the second type would have had with the input.
Then combine this machine with an instance of a sm.PureFunction (defined in an earlier
problem) to produce the desired composite machine.

The definition of sm.PureFunction is already included in the problem. Combinators (as
defined in Section 4.2 of the notes) need to be accessed from the sm module, that is,
sm.Cascade, sm.Parallel, sm.Parallel2, etc.

Do not define any new state-machine subclasses. You can do this all with
combinators and sm.PureFunction.

Assign your machine to the name maxAccount.

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sm-module.html

Part 2: Investment

My business has two bank accounts, as above. I put any deposit or withdrawal whose
magnitude is greater than $3,000 in the account of type 1, and all other deposits and
withdrawals in the account of type 2. On every step, both accounts should continue to
earn the relevant interest. The output should be the sum of the balances in the two
accounts.

Implement this by composing the two bank accounts using sm.Parallel2 and cascading
it with two simple machines you implement using sm.PureFunction.

The definition of sm.PureFunction is already included in the problem. Combinators need
to be accessed from the sm module, that is, sm.Cascade, sm.Parallel2, etc.

Assign your machine to the name switchAccount.

You will probably want to use helper functions in your solution.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	sm module

