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PROFESSOR:

Hi. Today I'd like to talk about signals and systems again. At this point, you're
probably familiar with the motivation for why we're talking about discrete linear time
and variant systems, and also with a few of the representations that we're going to
end up using in this course. But you're still not sure what it is that we're trying to
accomplish. Or where's the part where we get to predict the future based on the fact

that we are capable of manipulating these systems?

Well, we actually have to be capable of manipulating these systems. And at this
point, we can describe this system as we see it, but we can't also manipulate its
representation in ways that make sense to us. So the thing that I'm going to do
today is talk about different system equivalences and how to take a system and
solve for an expression that represents a complex system and also how if you know
that some things in your system are equivalent, how you can convert between them.
At that point, we should be able to talk about poles, which is how we're going to

actually predict the future.

So different equivalences that I'd like to talk about. I'm first going to briefly review
the facts that last time we discovered the notion of system function, right? We can
take a representation of a system and abstract it away into some sort of function,
where we take the input as it's given to us and then multiply it by this function and

then get the output that we're interested in.

How do we deal with something more complex? | mean, y is all the way over here.
And we've got multiple system functions. And | don't even know what happens here,

but it doesn't have to be that scary. Let's break it down.

One of the easiest ways to approach something like this is to identify each position
where you have a new signal, or if you were to sample here, you would have a new
signal, and label those values appropriately. You can then start with your final
output and then back solve for the values that you're interested in as a

consequence of that final output.



In this particular example, y is going to be y2 plus y3. y2 is going to be y1 times H2,
where H2 is some system function. And it probably is abstracting away some
combination of gains, delays, and adders like this one here. y1 is going to be x

times H1. And Y3 is going to be x times H3.

Now I've got all my expressions in terms of either y or something for which | have an
equivalent expression for x. So | can do my substitutions, come up for an

expression for y over x, in terms of H1, H2, and H3.

Here I've just made the substitutions of the equations above and factored out the x.
If | wanted the system function, | would then just divide by x. And then | would have

y over X is equal to this expression.

The thing | wanted to indicate is that if | wanted to abstract this away into its own
box-- maybe | wanted like a big H or an HO or something like that-- and it
represented what was happening in this top line, cascading two system functions is
the functional equivalent of multiplying them together. So if | have an expression for
H1 and | have an expression for H2, and | want the expression that is equal to

cascading H1 and H2, I just multiply them together.

Likewise, if | want an expression for the linear combination of two system functions
applied to an input individually, like the combination H1 and H2, and H3, it's a
summation of those two values which is expressed here. This is the same as the
relationship that we reviewed in a very basic sense when we were originally doing
the accumulator. The only thing I'm attempting to indicate is that, that relationship
scales to an arbitrary level of complexity. So if you need to, you could shift around

these values, if you can find some sort of equivalence.

Let's see what happens when H2 is equal to H3. I'm going to take my operator
equation. What this means is that if | wanted to rewrite this block diagram, | could do
so by doing-- This is really similar to bubble pushing. If you've done 6.004 or 6.002
and have experience with logic gates, | just wanted to indicate that it's also a thing

that you can do for block diagrams and system functions.



There's one more type of equivalence that | want to talk about. | call it feedback
equivalence. Here's our normal accumulator rate. If | wanted to represent this
feedback system as a feed forward system, what would | have to do? Well, the first
time that | sampled from x, it would just be y. So right now this diagram matches for

the first time step.

On the second time step, if | had an input from x from the previous time step, |
would also want to account for it by putting in a delay and then summing it with the
current value of x in order to get y. At the second time step, | would want access to
the starting value, the value from the previous time step, and the value from the

current time step.

And one more time, to exhaust the example, at the third time step, my output would
be a linear combination of the starting value, the value from the first time step, the

value from the second time step, and the value from the current third time step.

We'd end up doing this ad nauseum to model our feedback system. So it's difficult
to do on paper, but it turns out there's a great relationship between these two
equivalences and things that we already know from-- | want to say high school

calculus or possibly 18.01, 18.02.

Geometric sequences. When we solved for the system function, we found an
expression for our feedback system. If | wanted to find an equivalent expression
using this feed forward system, | would look at this infinite summation of x terms. So
if | wanted to know something about the long-term behavior of the system, in terms
of this system function, | would solve for this expression and then using my

knowledge of geometric sequences, in order to express the long-term behavior.

In the general sense, in this course, we're going to be looking at the unit sample
response of a system. What that means is, if the only thing | ever do for input is a
single value of 1 at time 0, then what does my output look like? The reason we're
looking at the unit sample response is because it's (a) the simplest way to look at
the long-term behavior of a discrete linear time invariant system. But the other

reason (b) is -- once we have this, we can also use it to do things like to make



predictions about the long-term step response and other more complicated input

signals.

In the case of the accumulator, if | input 1 at time 0, my output is going to be 1
forever more. That's reflected in the coefficient of my geometric sequence. If | want
to know what my long-term response is going to look like, | can look at the
coefficient of R and make a decision about whether or not I'm going to diverge or

converge or do neither.

So if | put a coefficient on R, whatever p0 converges to is what my system is going
to converge to. So using my knowledge of p0, | can make long-term predictions
about the behavior of the system. Next time I'm going to go over some general
classifications of those behaviors for the system and how to more effectively use our

knowledge of p0 and how to deal with things like second order systems.
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