
Problem Wk.4.4.1: LTISM

We have seen how to build up complex state machines out of primitives, and showed
that we could run them. The only problem with that way of working is that we never
have an explicit representation of the entire system as a difference equation. Later, we
will automatically compute difference equations for systems created with combinators;
for now, we'll create state machines directly from the coefficients for a difference
equation.

For each of these systems to be a well-defined state machine, we have to specify the
initial state, which can be characterized by values for previous output values and
previous input values. Recall that a difference equation is in the form:

We have defined a special class of state machines, called LTISM, that can be used to
easily implement any machine in this class. The initializer is

LTISM(dCoeffs, cCoeffs, previousInputs, previousOutputs)

where

dCoeffs is a list of the coefficients through , in that order.

cCoeffs is a list of the coefficients
 through , in that order.

previousInputs is a list of
 through , in that order.

previousOutputs is a list of
 through , in that order.

Here are Python expressions that construct instances of LTISM:

Output at time n is 3 times the input at time n:

y[n] = 3 x[n]

LTISM([3],[])

Output at time n is the input at time n-1 (this is our old friend the delay machine):

y[n] = x[n-1]

LTISM([0, 1],[], [0], [])

Here, we've specified that the .
Output at time n is the 2 times the input at time n-2:

y[n] = 2 x[n-2]

LTISM([0, 0, 2],[], [4, 10], [])

Here, we've specified that the and .
Output at time n is the 2 times the output at time n-1:

y[n] = 2 y[n-1]

LTISM([],[2], [], [1])

Here, we've specified that the . (What would happen if we set it to 0?)
Output at time n is the output at time n-1 plus the output at time n-2:

y[n] = y[n-1] + y[n-2]

LTISM([],[1, 1], [], [1, 1])

Here, we've specified that the and . This formula generates a
familiar sequence. Do you recognize it?

Show how to construct the following state machines as an instance of the LTISM class.
Below, you will need to enter the elements of the four lists that are needed to create an
instance:

 LTISM(dCoeffs, cCoeffs, previousInputs, previousOutputs)

If any argument list is empty, enter none, otherwise enter a sequence of numbers
separated by spaces (no commas, parens, brackets, etc).

1. A state machine whose output at time n is the sum of its inputs up to and including
time n. Assume
dCoeffs (input):
cCoeffs (output):
previousInputs:
previousOutputs:

2. A state machine whose output at time n is the sum of its inputs up to and including
time n-1. Assume
dCoeffs (input):
cCoeffs (output):
previousInputs:
previousOutputs:

3. A state machine whose output at time n is the sum of its inputs up to and including
time n-1 each scaled by 0.1. Assume and .

dCoeffs (input):

cCoeffs (output):

previousInputs:

previousOutputs:

.

 and .

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

