
Problem Wk.4.1.5: PolyR on Signals 

Read the handout for the software lab. Implement the polyR procedure. You can 
assume the following methods are in the Signal class: 

class Signal:
def __add__(self, other):

return SummedSignal(self, other)
def __rmul__(self,other):

return ScaledSignal(self, other) 

And so, you can add Signal instances and scale them by a constant using arithmetic 
operations: 

s1 = CosineSignal(0.1)
 
s2 = CosineSignal(0.3)
 
s3 = s1 + s2
 
s4 = 2 * s3
 

Note that the number must be the first argument of the multiply. 

You can also use Rn(signal, k); it is already defined for you. 

Be careful when using the + operator on Signals; it will only work on two Signals. For 
example, you cannot do: 

result = 0
 
result += CosineSignal(0.1)
 

If you want to use the Python sum operator, then you have to be careful about 
specifying the start value; see the Python documnetation for sum. 

The first argument to polyR is a signal and the second is an instance of the Polynomial
class. You can get a list of the coefficients from the coeffs attribute of a Polynomial
instance. You can create new instances via poly.Polynomial(c) where c is a list of 
coefficients. 

You are welcome to use recursion in your procedure. 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/poly.Polynomial-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/poly.Polynomial-class.html


MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

