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6.01: Introduction to EECS 1

Designing Control Systems

March 8, 2011

Midterm Examination #1

Time: Tonight, March 8, 7:30pM to 9:30 PMm
Walker Memorial (if last name starts with A-M)
10-250 (if last name starts with N-Z)

Everything up to and including Design Lab 5.

Location:

Coverage:
You may refer to any printed materials that you bring to exam.
You may use a calculator.

You may not use a computer, phone, or music player.

No software lab this week.

Signals and Systems

Feedback, Cyclic Signal Paths, and Poles

Difference equations are mathematically compact.

yln] = z[n] +poy[n — 1]

Block diagrams illustrate signal flow paths from input to output.

X =»(+ > Y
4 J

Operators use polynomials to represent signal flow compactly.
Y =X+ pRY
System Functionals represent systems as operators.

Y 1

Y=HX; H=—=——
’ X 1-pR

Multiple representations of systems, each with particular strengths.

The structure of feedback produces characteristic behaviors.

Feedback produces cyclic signal flow paths.
X - Y

Cyclic signal flow paths — persistent responses to transient inputs.
N =2 %

) 1 »

=1

We can characterize persistent responses (called modes) with poles.
yln] =pg; n=>0

Designing a Control System

Example: wallFinder System

Today's goal: optimizing the design of a control system.

Using feedback to control position (lab 4) can lead to bad behaviors.

[0

T
—— d;[n] = desiredFront

» dy[n] = distanceFront

do

k=-0.5 ¢

What causes these different types of responses ?
Is there a systematic way to optimize the gain k7
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Analysis of wallFinder System: Review

Analysis of wallFinder System: Block Diagram

Response of system is concisely represented with difference equation.

0l

T
—— d;[n] = desiredFront

» dy[n] = distanceFront

proportional controller: v[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with no delay: ds[n] = do[n]

The difference equations provide a concise description of behavior.
do[n] = do[n — 1] — Twln — 1] = do[n — 1] — Tk(d;[n — 1] — do[n — 1])

However it provides little insight into how to choose the gain k.

A block diagram for this system reveals two feedback paths.

0]

T
——— d;[n] = desiredFront

» do[n] = distanceFront

v[n] = ke[n] = k(d;[n] — ds[n])

locomotion: dy[n] = do[n —1] - Tvn—1]

proportional controller:

sensor with no delay: ds[n] = do[n

> ﬁ%%%ﬁr* g

Analysis of wallFinder System: System Functions

Check Yourself

Simplify block diagram with R operator and system functions.

Start with accumulator.

B e e

What is the input/output relation for an accumulator?

F Q@ E

Y =RW =R(X +Y)
Yy R

X 1-R

This is an example of a recurring pattern: Black’s equation.

[ Determine the system function H = % ]

X —>®—>—> Y
L &

P F
1. 2.
1—FG 1+ FG
1 1
P4 4. F
3 Fti—g “1-a

5. none of the above

Black’s Equation

Analyzing wallFinder: System Functions

Black’'s equation has two common forms.

X —>®ﬂ>—> Y X—>®ﬂ>.——> Y

o

Difference: equivalent to changing sign of G.

Right form is useful in most control applications where the goal is
to make Y converge to X.

Simplify block diagram with R operator and system functions.

B S i

Replace accumulator with equivalent block diagram.
D; —>®—> R > D,
’ T i L-Rr[[ ™ °

Now apply Black’s equation a second time:

—kTR
D, 1-R _ —KTR _  —kTR
D; kTR~ 1-R—-kTR 1-(1+kT)R

1+

1-R
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Analyzing wallFinder: System Functions

Analyzing wallFinder: Poles

We can represent the entire system with a single system function.

R D i

Replace accumulator with equivalent block diagram.

D; —»?—D—»&—» R D,
_ 1-R

Equivalent system with a single block:

\/

—kTR

Di = T—amR

> D,

Modular! But we still need a way to choose k.

The system function contains a single pole at z =1+ kT.

D, —kTR

D; 1-(1+kD)R
The numerator is just a gain and a delay.
The whole system is equivalent to the following:

h *%C?_@J

where p, = 1+ kT. Here is the unit-sample response for kT = —0.2:

> D,

h[n]

Analyzing wallFinder

Step Response

We are often interested in the step response of a control system.

T m -

—— d;[n] = desiredFront
-+ dy[n] = distanceFront

Start the output d,[n] at zero while the input is held constant at one.

Calculating the unit-step response.

Unit-step response s[n] is response of H to the unit-step signal u[n],
which is constructed by accumulation of the unit-sample signal §[n].

o[n] —>®—<—|—> uln| —> sn]

Commute and relabel signals.

o[n] —> h[n] —>®—<—|—> sn]

The unit-step response s[n] is equal to the accumulated responses
to the unit-sample response h[n].

Analyzing wallFinder

Analyzing wallFinder

The step response of the wallFinder system is slow because the
unit-sample response is slow.

h[n|
5t EYPVOU
0

The step response is faster if kT'= —0.8 (i.e., pg =0.2).

hln|
0.8
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Analyzing wallFinder: Poles

Check Yourself

The poles of the system function provide insight for choosing k.

Dy —kTR (1-po)R

-9 _ = : =1+kT

D, 1-(Q+kDR  1-pRrR = P=HF

Imz Imz Imz
1 Rez 1 Rez 1 Rez

-1<kT <0 —2< kT < -1 kT < —2
O0<py<1 —1<py<0 po < —1
monotonic alternating alternating
converging converging diverging

[ Find kT for fastest convergence of unit-sample response. ]

D, —kTR
D 1-(1+kT)R

1. kT =-2

2. kT = -1

3. kT =0

4. kT =1

5. kT =2

0. none of the above

Analyzing wallFinder

Analyzing wallFinder: Space-Time Diagram

The optimum gain k& moves robot to desired position in one step.

ol

T
—— d;[n] = desiredFront=1m

» do[n] = distanceFront=2m

kT = —1
1 1
h=—m= 110 = -10
v[n] = k(d;[n] — do[n]) = —10(1 —2) =10 m/s

exactly the right speed to get there in one step!

The optimum gain k moves robot to desired position in one step.

a)

T
—— > d;[n] = desiredFront

» do[n] = distanceFront

» position
(o] v =10

v =

v =
V=
v =
v =

O0O00O0O0

v =

time

Analysis of wallFinder System: Adding Sensory Delay

Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

=0l

| l
—— > d;[n] = desiredFront
» dy[n] = distanceFront

proportional controller: v[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Twin — 1]

sensor with delay: d4[n] = do[n — 1]

Adding delay tends to destabilize control systems.

=0l

T
—— d;[n] = desiredFront

» do[n] = distanceFront

» position
(e]
(o] v =10
(o] v=20
(@] v=-10
O v=—10
(o] v=20
(e]
v

time
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Analysis of wallFinder System: Block Diagram

Analyzing wallFinder: System Functions

Incorporating sensor delay in block diagram.

0l

T
—— ¥ d;[n] = desiredFront

» dy[n] = distanceFront

proportional controller: wv[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = dy[n — 1] = Tvin — 1]

sensor with delay: dg[n] = do[n — 1]

D; _’?_'DL ®

R 1<
LR

We can represent the entire system with a single system function.

*?*DL%?” n

Check Yourself

Analyzing wallFinder: Poles

Sl Pt

[ Find the system function H = % }
1 kKTR —kTR
"1-R "1+ R-kTR?
kKTR —kTR
3. —linkTR 4. T-R_ITRE

5. none of the above

1
Substitute — for R in the system functional to find the poles.
z

The poles are then the roots of the denominator.

2
1 1
r=_—=+ - kT
z 2 (2> +

Poles

Feedback and Control: Poles

Poles can be identified by expanding the system functional in partial
fractions.

Y by +biR+boR% +bgR3+ - -

X 1+aR+aR%2+azR3+---

Factor denominator:

Z_ b0+b1R+b2R2+b3R3+.,,
X  (1-poR)(1—-p1R)(1—p2R)(1 = p3R)---

Partial fractions:

Y eg e1 €9

r_ e o AR+ PR
X Topr TTopr tTopr T T o H IR LR

The poles are p; for 0 < i < n where n is the order of the denominator.

One geometric mode p} arises from each factor of the denominator.

If kT is small, the poles are at z ~ —kT and z~ 1+ kT.

c= L V()P RT = L1+ VIFART) ~ L(1 4 (14 2kT)) = 1 + kT, —kT
Imz
kT ~0 z-plane
4 1 Rez

Pole near 0 generates fast response.
Pole near 1 generates slow response.
Slow mode (pole near 1) dominates the response.

March 8, 2011
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Feedback and Control: Poles Feedback and Control: Poles

As kT becomes more negative, the poles move toward each other If kT < —1/4, the poles are complex.
and collide at z = § when kT = —1.

2 2 _1 12 1y (1?2
s= @) =3 () -1 =14 e= g+ (3) + kT =3 £y kT = (3)

1 Imz | Imz
T L z-plane

z-plane

kT = -1
4 /
2‘ \ Rez

Persistent responses decay. The system is stable. Complex poles — oscillations.

Same oscillation we saw earlier! Check Yourself
Adding delay tends to destabilize control systems.
Imz
m kT = -1 z-plane
r |
—— d;[n] = desiredFront
» d,[n] = distanceFront
Rez
1
» position
(o]
(o] v =10
(o] v=20
(@] v=-10 . . . .
What is the period of the oscillation?
(o] v=-—10
(@] v=20
o 1.1 2.2 3.3
_" 4. 4 5.6 0. none of above
time
Feedback and Control: Poles Check Yourself
The closed-loop poles depend on the gain. I
mz
Imz z-plane
z-plane g closed-loop poles
- A
a R 1 1 2
ez — 4 - kT
i =y(3) +
P== I Rez A
| —1
Y
| 1
[ Find kT for fastest response. ]
If kT:0 — —co: then z1,20:0,1 — .4 — £ joo 1.0 2. -4 3. -1
4. —1 5. —© 0. none of above
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Destabilizing Effect of Delay

Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.
Ideal sensor: dg[n] = dy[n]
More realistic sensor (with delay): ds[n] = do[n — 1]

Imz Imz

A
I
<t }Rez ‘6’ Rez
,_/
A

Fastest response without delay: single pole at z = 0.

1
Fastest response with delay: double pole at z = much slower!

7

Adding more delay in the feedback loop is even worse.
More realistic sensor (with delay): ds[n] = do[n — 1]

Even more delay: ds[n] = do[n — 2]

Imz Imz
A
—_
2
Rez Rez
,_/
v
. 1
Fastest response with delay: double pole at z = 3
Fastest response with more delay: double pole at z = 0.682.

— even slower

Check Yourself

Designing Control Systems: Summary

¥ O Rb{RP{RF

[ How many of the following statements are true? J

1. This system has 3 poles.

2. unit-sample response is the sum of 3 geometric sequences.
3. Unit-sample response is y[n] : 0,0,0,1,0,0,1,0,0,1,0,0,1...

4. Unit-sample response is y[n] : 1,0,0,1,0,0,1,0,0,1,0,0,1...

5. One of the poles is at 2 =1.

System Functions provide a convenient summary of information that
is important for designing control systems.

The long-term response of a system is determined by its dominant
pole — i.e., the pole with the largest magnitude.

A system is unstable if the magnitude of its dominant pole is > 1.
A system is stable if the magnitude of its dominant pole is < 1.

Delays tend to decrease the stability of a feedback system.
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