6.01: Introduction to EECS 1

Designing Control Systems

March 8, 2011



Midterm Examination #1

Time: Tonight, March 8, 7:30 pMm to 9:30 PM

Location: Walker Memorial (if last name starts with A-M)
10-250 (if last name starts with N-Z)

Coverage: Everything up to and including Design Lab 5.
You may refer to any printed materials that you bring to exam.
You may use a calculator.

You may not use a computer, phone, or music player.

No software lab this week.



Signals and Systems

Multiple representations of systems, each with particular strengths.
Difference equations are mathematically compact.
y[n] = z[n] + poy[n — 1]
Block diagrams illustrate signal flow paths from input to output.
x =)

IY

Operators use polynomials to represent signal flow compactly.

Y =X +pyRY
System Functionals represent systems as operators.

Y 1
Y=HX,;, H=—=——
’ X 1-poR



Feedback, Cyclic Signal Paths, and Poles

The structure of feedback produces characteristic behaviors.

Feedback produces cyclic signal flow paths.
X —» —> Y

Cyclic signal flow paths — persistent responses to transient inputs.
X =0 > Y

y \ 1
|| T
-
> ; |
S

We can characterize persistent responses (called modes) with poles.
yln] =pp; n>0
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Designing a Control System

Today's goal: optimizing the design of a control system.



Example: wallFinder System

Using feedback to control position (lab 4) can lead to bad behaviors.

e\

T
— » di[n] = desiredFront

» dy[n] = distanceFront

do

k=-0.5

What causes these different types of responses ?
Is there a systematic way to optimize the gain k7



Analysis of wallFinder System: Review

Response of system is concisely represented with difference equation.

e\

T
— » di[n] = desiredFront

» dy[n] = distanceFront

proportional controller: wv[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with no delay: ds[n] = do[n]

The difference equations provide a concise description of behavior.
do[n] = do[n — 1] = Tv[n — 1] = do[n — 1] — Tk(d;[n — 1] — do[n — 1])

However it provides little insight into how to choose the gain k.



Analysis of wallFinder System: Block Diagram

A block diagram for this system reveals two feedback paths.

e\

T
— » di[n] = desiredFront

» dy[n] = distanceFront

proportional controller: wv[n] = ke[n] = k(d;[n] — ds[n])
locomotion: do[n} = do[n — 1] —Tw[n — 1]

sensor with no delay: ds[n] = do[n

D; —»@—»[}—»[}—»@—» R > D,




Analysis of wallFinder System: System Functions

Simplify block diagram with R operator and system functions.
Start with accumulator.

o>

What is the input/output relation for an accumulator?

X—»@—W>7z > Y
3

v
-
Q

Y =RW =R(X+Y)

Y R

X 1-R

This is an example of a recurring pattern: Black’s equation.



Check Yourself

Y
[ Determine the system function H = <

X —>O—> F > Y
L .
F F
L 1-FG 2. 1+ FG
1

5. none of the above




Black’s Equation

Y
Determine the system function H = X

X—»@—W>F

L

A

Y =FW =F(X +GY) = FX + FGY

Y F
X H_l—FG

forward gain F

closed-loo ain H =
Ppg 1 —loop gain FG

v



Check Yourself

Y
[ Determine the system function H = <

1

X—>®—W>F >
L s

A

F
1-FG

3. Fq— 4
. —— .

5. none of the above

Y




Black’s Equation

Black’'s equation has two common forms.

\ 4
<

X—»@—W>F > Y X—»@_—W>F
Lz

A

A

F F
H: H:
1-FG 1+ FG

Difference is equivalent to changing sign of G.

Right form is useful in most control applications where the goal is
to make Y converge to X.



Analyzing wallFinder: System Functions

Simplify block diagram with R operator and system functions.

D; —»C?—>I>—>I>—>@—*>—R > D,

Replace accumulator with equivalent block diagram.

D; —»C?—>I>—>l>—> - ?R > D,

Now apply Black's equation a second time:

—kTR
Dy, 1-R _  —KITR = —kTR
D; 1+—kTR_1—R—kTR_1—(1+k:T)R

1-R



Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

D; —»C?—>I>—>I>—>@—*>—R > D,

Replace accumulator with equivalent block diagram.

D; —»C?—>I>—>l>—> - ?R > D,

Equivalent system with a single block:

—kTR

D; —p| — ———
! 1-(1+kT)R

—> D,

Modular! But we still need a way to choose k.



Analyzing wallFinder: Poles

The system function contains a single pole at z =1+ kT.

D, —kTR

D, 1-(1+kDR

The numerator is just a gain and a delay.

The whole system is equivalent to the following:

Di—b

R

R

0 -

A

where p, =1+ kT. Here is the unit-sample response for kT = —0.2:

hin]
0;3_1??99000:;
0

n



Analyzing wallFinder

We are often interested in the step response of a control system.

Blwel

—— > d;[n] = desiredFront

-+ dy[n] = distanceFront

Start the output dy[n] at zero while the input is held constant at one.



Step Response

Calculating the unit-step response.

Unit-step response s[n] is response of H to the unit-step signal u[n],
which is constructed by accumulation of the unit-sample signal §[n].

8[n] —>C? > uln] —»| H —> s[n]

Commute and relabel signals.

3[n] —| H |—> hln] —(%) > s

t =

The unit-step response s[n| is equal to the accumulated responses
to the unit-sample response h[n].



Analyzing wallFinder

The step response of the wallFinder system is slow because
unit-sample response is slow.

hln]

the



Analyzing wallFinder

The step response is faster if kT'=—0.8 (i.e., pg = 0.2).

hln]
0.8
0 n
sn]
1 —-_——— - -0-



Analyzing wallFinder: Poles

The poles of the system function provide insight for choosing k.

D, —kTR (1—po)R
- = = N == 1 kT
D; 1-(I+kDR _ 1—pr = PO71F
Imz Imz Imz

1 1 1

(NG Y
NN

—1<kT'<0 —2< kT < -1 kT < =2
0<py <1 —1<pp<O po < —1
monotonic alternating alternating

converging converging diverging



Check Yourself

[ Find kT for fastest convergence of unit-sample response. }

D, —kTR
D, 1-(1+kD)R

1. kT = -2

2. kT =—1

3. kT =0

4. kT =1

5. kT =2

0. none of the above




Check Yourself

Find kT for fastest convergence of unit-sample response.

Dy —kTR
D, 1-(1+kDR

If kT'= —1 then the pole is at z = 0.

D, —kETR

7:—:7?,
D; 1-(1+kDR

unit-sample response has a single non-zero output sample, at n =1.



Check Yourself

Vs

[ Find kT for fastest convergence of unit-sample response. 2 }

D, —kTR
D, 1-(L+kDR

1. kT = -2

2. kT = -1

3. kT =0

4. kT =1

5. kT =2

0. none of the above




Analyzing wallFinder

The optimum gain £ moves robot to desired position in one step.

ol

| v
—— d;[n] = desiredFront=1m

» d,[n] = distanceFront=2m

S ——
T  1/10 0

v[n] = k(di[n] — do[n]) = —10(1 — 2) =10 m/s

exactly the right speed to get there in one step!



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position

time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.
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T
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@] v =10

time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.
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T
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time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.
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T
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time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
@] v =10
v=>0

(0]

time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.

m T

—— d;[n] = desiredFront
» d,[n] = distanceFront

» position
@] v =10
@] v=20
@] v=20

time



Analyzing wallFinder: Space-Time Diagram

The optimum gain £ moves robot to desired position in one step.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o v =10
o v=20
o v=20
o v=20
o v=20
() v=>0
() v=>0
4

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— > d;[n] = desiredFront

» d,[n] = distanceFront

proportional controller: wv[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with delay: dg[n] =d,[n — 1]



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position

(@) v =10

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

m T

—— d;[n] = desiredFront
do[n] = distanceFront

»
>

» position

>

(@)
v =10

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

m T

—— d;[n] = desiredFront
do[n] = distanceFront

»
>

» position
o
@] v =10
(@) v=20

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o
@] v =10
=0

OO

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o
@] v =10
(@) v=20
O v=—10

time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o
@] v =10
(@) v=20
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time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o
@] v =10
(@) v=20
O v=—10
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time



Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.
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T
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o
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Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.
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T
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o
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Analysis of wallFinder System: Adding Sensory Delay

Adding delay tends to destabilize control systems.

-0l

T
—— d;[n] = desiredFront

» d,[n] = distanceFront

» position
o
@] v =10
(@) v=20
O v=—10
(@) v=—10
o v=20
o
4

time



Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

-0l

T
—— > d;[n] = desiredFront

» d,[n] = distanceFront

proportional controller: wv[n] = ke[n] = k(d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with delay: ds[n] = dy[n — 1]

D; —>GTr)—>[>X>[>R—:C?—> R > D,




Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

D; —>GTr)—>[>X>[>R—:C?—> R > D,




Check Yourself

D; —>C?—>[>1>[>R—;GP—> R

D
[ Find the system function H = =2

D;

ETR —kTR
"1-R " 14+ R —EkETR?
ETR —kTR
. —— — kT 4, —
3 1-R R 1 —R — kTR?

5. none of the above




Check Yourself

D
Find the system function H = — .

D; 4@—»@—»9—»@—» R > D,
Replace accumulator with equivalent block diagram.

D; —>C?—>[>—>>—» Lt D,

R =
kTR
Do 1-R _ —kTR
D; —KTR2  1-TR — kTR2
1+

1-R



Check Yourself

D; —>C?—>[>1>[>R—;GP—> R

D
[ Find the system function H = =2

. 4
D;
ETR —kTR
T1-R 14+ R - ETR?
ETR —kTR
3. 71_R—kTR 4. T-R_TR2

5. none of the above




Analyzing wallFinder: Poles

1
Substitute — for R in the system functional to find the poles.
z

D, ~kTR —kT1 —kTz

D 1-R-kIR2 1-L1_prd ~ 22—z kT
z

The poles are then the roots of the denominator.

2
1 1
= —+4/(= T
z 5 (2> + k



Poles

Poles can be identified by expanding the system functional in partial
fractions.

Y by + bR+ bR?+ b3RR3+ -

X 1+ aR+aR?+a3R3+---

Factor denominator:

Y bo + b1 R + baR2 + b3RR3 + - - -

X~ (1-poR) 1 —piR)(1 - paR)(1 — p3R) -

Partial fractions:

Y eq el €9

— R R2 4 ...
X 1—p07€+1—p17€+1—p272+ + fo+ iR+ foR” +

The poles are p; for 0 < i < n where n is the order of the denominator.

One geometric mode p;* arises from each factor of the denominator.



Feedback and Control: Poles

If kT is small, the poles are at z~ —kT and z~ 1+ kT.

/(1) + kT = L(1 £ VIFART) ~ L(1 £ (1 + 2kT)) = 1 + KT, —kT

D=

z =

Imz
kKT =0 z-plane

F 03 Rez

Pole near O generates fast response.
Pole near 1 generates slow response.
Slow mode (pole near 1) dominates the response.



Feedback and Control: Poles

As kT becomes more negative, the poles move toward each other

and collide at z = § when kT = —1.
_ 14 (;)2+kT_1i (1)2_;_;1
=73 2 =2 2 1= 22
1 Imz |
BT — = Z-plane
2
o+ 2 T Rez

Persistent responses decay. The system is stable.



Feedback and Control: Poles

If kT < —1/4, the poles are complex.

(3 4+ RT = 4 4y /—kT = (3)°
z

Im
kT = —

Vs
N

z =

DN —

z-plane

1 Re z

Complex poles — oscillations.



Same oscillation we saw earlier!

Adding delay tends to destabilize control systems.

-0l

| v
—— d;[n] = desiredFront
» d,[n] = distanceFront

» position
o
@] v =10
(@) v=20
O v=—10
(@) v=—10
o v=20
o
4

time



Check Yourself

KT'= -1

z-plane

Rez

[ What is the period of the oscillation?

1.1 2. 2
5 6

3.3

0. none of above




Check Yourself

kT = —1 z-plane

Rez

1 \/3 +4
— — 4 Y2 Ein/3
Po 5 J B €
pg e:l:j7m/3

cHIOT[3  EiT[3  k2m/3  Ajdn/3 jAn/3  Aj5T/3

N——
1

eij67T/3
~——
ei2m—1



Check Yourself

KT'= -1

z-plane

Rez

[ What is the period of the oscillation? 5

1.1 2. 2
5 6

3.3

0. none of above




Feedback and Control: Poles

The closed-loop poles depend on the gain.

Imz
z-plane

—

Re z

Y
7

If kT :0 —- —oco: then 21,22:0,1%%,%—>%ijoo



Check Yourself

Imz
Z-plane
<
A
1
\ 4
I

closed-loop poles

1
= ge
2

Rez

(

1

2

2
) +ar

[ Find kT for fastest response.

1.0
4. -1

2.
5.

1
4
—00

1
3. —3
0. none of above




Check Yourself

2
1 1
= -+ — kT
z > (2) +

The dominant pole always has a magnitude that is >

1
It is smallest when there is a double pole at z = 3

1
Therefore, kT = 1

N |



Check Yourself

Imz
Z-plane
<
A
1 Rez
\ 4
I

closed-loop poles

1
= ge
2

(

1

2

2
) +ar

[ Find kT for fastest response. 2

1.0
4. -1

2.
5.

3.

1
4
—00

1

2

0. none of above




Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.
Ideal sensor: ds[n] = dy[n]

More realistic sensor (with delay): ds[n] = do[n — 1]

Imz Imz
A

—

Rez HK—r— Rez

A

Fastest response without delay: single pole at z = 0.

Fastest response with delay: double pole at z = much slower!

5 .



Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.
More realistic sensor (with delay): ds[n] = do[n — 1]

Even more delay: ds[n] = do[n — 2]
Imz Imz
A

—

A

Rez Rez

L
\ 4

1
Fastest response with delay: double pole at z = 3
Fastest response with more delay: double pole at z = 0.682.

— even slower



Check Yourself

X >R RPR
4

\/
~

How many of the following statements are true?

. This system has 3 poles.

. Unit-sample response is y[n]:0,0,0,1,0,0,1,0,0,1,0,0,1...
. Unit-sample response is y[n]

1

2. unit-sample response is the sum of 3 geometric sequences.
3

4 :1,0,0,1,0,0,1,0,0,1,0,0,1...

5

. One of the poles is at z =1.




Check Yourself

\/
~

X >R RPR
4

[ How many of the following statements are true? 4
1. This system has 3 poles.

2. unit-sample response is the sum of 3 geometric sequences.
3. Unit-sample response is y[n]:0,0,0,1,0,0,1,0,0,1,0,0,1...

4. Unit-sample response is y[n]:1,0,0,1,0,0,1,0,0,1,0,0,1...

5. One of the poles is at z =1.




Designing Control Systems: Summary

System Functions provide a convenient summary of information that
is important for designing control systems.

The long-term response of a system is determined by its dominant
pole — i.e., the pole with the largest magnitude.

A system is unstable if the magnitude of its dominant pole is > 1.
A system is stable if the magnitude of its dominant pole is < 1.

Delays tend to decrease the stability of a feedback system.
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