
6.01: Introduction to EECS I 

Designing Control Systems 

March 8, 2011




Midterm Examination #1


Time:	 Tonight, March 8, 7:30 pm to 9:30 pm 

Location:	 Walker Memorial (if last name starts with A-M) 

10-250 (if last name starts with N-Z) 

Coverage:	 Everything up to and including Design Lab 5.


You may refer to any printed materials that you bring to exam.


You may use a calculator.


You may not use a computer, phone, or music player.


No software lab this week.




Signals and Systems


Multiple representations of systems, each with particular strengths. 

Difference equations are mathematically compact. 

y[n] = x[n] + p0 y[n − 1] 

Block diagrams illustrate signal flow paths from input to output. 

Operators use polynomials to represent signal flow compactly. 

Delay

+

p0

X Y

Y = X + p0RY 

System Functionals represent systems as operators. 

Y 1 
Y = HX ; H = = 

X 1− p0R 



Feedback, Cyclic Signal Paths, and Poles


The structure of feedback produces characteristic behaviors. 

Feedback produces cyclic signal flow paths. 

Delay

+X Y

Cyclic signal flow paths → persistent responses to transient inputs. 

Delay

+

p0

X Y

We can characterize persistent responses (called modes) with poles. 

−1 0 1 2 3 4
n

y[n] = pno ; n ≥ 0



Designing a Control System


Today’s goal: optimizing the design of a control system.




Example: wallFinder System


Using feedback to control position (lab 4) can lead to bad behaviors. 

di[n] = desiredFront
do[n] = distanceFront

t

do

k = −0.5 t

do

k = −1

t

do

k = −2 t

do

k = −8

What causes these different types of responses ? 

Is there a systematic way to optimize the gain k ?




( ) 

( ) 

Analysis of wallFinder System: Review


Response of system is concisely represented with difference equation. 

proportional controller: v[n] = ke[n] = k di[n]− ds[n]


locomotion: do[n] = do[n − 1]− Tv[n − 1]


sensor with no delay: ds[n] = do[n]


di[n] = desiredFront
do[n] = distanceFront

The difference equations provide a concise description of behavior. 

do[n] = do[n − 1]− Tv[n − 1] = do[n − 1]− Tk di[n − 1]− do[n − 1]

However it provides little insight into how to choose the gain k. 



Analysis of wallFinder System: Block Diagram 

A block diagram for this system reveals two feedback paths. 

di[n] = desiredFront
do[n] = distanceFront

proportional controller: v[n] = ke[n] = k 
( 
di[n]− ds[n]

) 
locomotion: do[n] = do[n − 1]− T v[n − 1] 

sensor with no delay: ds[n] = do[n] 

+ k −T + RDi Do
−

V



Analysis of wallFinder System: System Functions


Simplify block diagram with R operator and system functions. 

Start with accumulator. 

+ k −T + RDi Do
−

What is the input/output relation for an accumulator? 

+ RX Y
W

Y = RW = R(X + Y ) 

Y = R 
X 1−R 

This is an example of a recurring pattern: Black’s equation. 



Check Yourself


Determine the system function H = Y 
X 

. 

+ F

G

X Y

1. 
F 

1− F G 
2. 

F 
1 + F G 

3. F + 1 
1− G 

4. F × 
1 

1− G 

5. none of the above 



+ F

G

X Y
W

Black’s Equation


Y 
Determine the system function H = . 

X 

Y = FW = F (X +GY ) = FX + F GY 

Y F 
X 
≡ H =

1− FG 

forward gain F 
closed-loop gain H = 

1− loop gain FG 



Check Yourself


Determine the system function H = Y 
X 

. 1 

+ F

G

X Y
W

1. 
F 

1− F G 
2. 

F 
1 + F G 

3. F + 1 
1− G 

4. F × 
1 

1− G 

5. none of the above 



Black’s Equation


Black’s equation has two common forms.


+ F

G

X Y
W

+ F

G

X Y
W

−

H = F 
H = F 

1 + F G 1− FG 

Difference is equivalent to changing sign of G.


Right form is useful in most control applications where the goal is


to make Y converge to X.




Analyzing wallFinder: System Functions


Simplify block diagram with R operator and system functions. 

+ k −T + RDi Do
−

Replace accumulator with equivalent block diagram. 

+ k −T R
1−R

Di Do
−

Now apply Black’s equation a second time: 

−kT R
Do −kT R −kT R= 1−R = =

1− (1 + kT )RDi 1 + −kT R 1−R− kT R
1−R 



Analyzing wallFinder: System Functions


We can represent the entire system with a single system function. 

+ k −T + RDi Do
−

Replace accumulator with equivalent block diagram. 

+ k −T R
1−R

Di Do
−

Equivalent system with a single block: 

−kTR
1− (1 + kT )RDi Do

Modular! But we still need a way to choose k. 



Analyzing wallFinder: Poles


The system function contains a single pole at z = 1 + kT . 

Do −kT R= 
Di 1− (1 + kT )R 

The numerator is just a gain and a delay. 

The whole system is equivalent to the following: 

R 1−p0 +

p0 R

Di Do

where po = 1 + kT . Here is the unit-sample response for kT = −0.2: 

0
n

h[n]

0.2



Analyzing wallFinder


We are often interested in the step response of a control system. 

Start the output do[n] at zero while the input is held constant at one. 

di[n] = desiredFront
do[n] = distanceFront



Step Response


Calculating the unit-step response.


Unit-step response s[n] is response of H to the unit-step signal u[n],

which is constructed by accumulation of the unit-sample signal δ[n]. 

+

R

Hδ[n] u[n] s[n]

Commute and relabel signals. 

+

R

Hδ[n] h[n] s[n]

The unit-step response s[n] is equal to the accumulated responses 

to the unit-sample response h[n].




Analyzing wallFinder


The step response of the wallFinder system is slow because the 

unit-sample response is slow. 

0
n

h[n]

0.2

1

0
n

s[n]



Analyzing wallFinder


The step response is faster if kT = −0.8 (i.e., p0 = 0.2). 

0.8

0
n

h[n]

0
n

s[n]

1



Analyzing wallFinder: Poles


The poles of the system function provide insight for choosing k.


Do −kT R (1− po)R 
Di 

=
1− (1 + kT )R 

=
1− poR 

; p0 = 1 + kT 

1 Re z

Im z

0 < p0 < 1
−1 < kT < 0

monotonic
converging

1 Re z

Im z

−1 < p0 < 0
−2 < kT < −1

alternating

converging

1 Re z

Im z

p0 < −1
kT < −2

alternating

diverging



Check Yourself


Find kT for fastest convergence of unit-sample response. 

Do 
Di 

= −kT R
1− (1 + kT )R 

1. kT = −2 
2. kT = −1 
3. kT = 0 
4. kT = 1 
5. kT = 2 
0. none of the above 



Check Yourself


Find kT for fastest convergence of unit-sample response.


Do −kT R= 
Di 1− (1 + kT )R 

If kT = −1 then the pole is at z = 0. 

Do = −kT R 
Di 1− (1 + kT )R 

= R 

unit-sample response has a single non-zero output sample, at n = 1. 



Check Yourself


Find kT for fastest convergence of unit-sample response. 2 

Do 
Di 

= −kT R
1− (1 + kT )R 

1. kT = −2 
2. kT = −1 
3. kT = 0 
4. kT = 1 
5. kT = 2 
0. none of the above 



( ) ( ) 

Analyzing wallFinder


The optimum gain k moves robot to desired position in one step. 

kT = −1 

di[n] = desiredFront=1m

do[n] = distanceFront=2m

1 1

k = − = −

1/10 
= −10


T 

v[n] = k di[n]− do[n] = −10 1− 2 = 10 m/s 

exactly the right speed to get there in one step! 



Analyzing wallFinder: Space-Time Diagram 

The optimum gain k moves robot to desired position in one step. 

di[n] = desiredFront
do[n] = distanceFront

position

time
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Analyzing wallFinder: Space-Time Diagram 

The optimum gain k moves robot to desired position in one step. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = 0
v = 0
v = 0
v = 0
v = 0



( ) 

Analysis of wallFinder System: Adding Sensory Delay


Adding delay tends to destabilize control systems. 

proportional controller: v[n] = ke[n] = k di[n]− ds[n]


locomotion: do[n] = do[n − 1]− Tv[n − 1]


sensor with delay: ds[n] = do[n − 1]


di[n] = desiredFront
do[n] = distanceFront



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0



Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0



Analysis of wallFinder System: Block Diagram 

Incorporating sensor delay in block diagram. 

di[n] = desiredFront
do[n] = distanceFront

proportional controller: v[n] = ke[n] = k 
( 
di[n]− ds[n]

) 
locomotion: do[n] = do[n − 1]− T v[n − 1] 

sensor with delay: ds[n] = do[n − 1] 

+ k −T + R

R

Di Do
−

V



+ k −T + R

R

Di Do
−

V

Analyzing wallFinder: System Functions


We can represent the entire system with a single system function.




Check Yourself


+ k −T + R

R

Di Do
−

V

Find the system function H = Do 
Di 

. 

1. 
kT R
1− R 

2. 
−kT R

1 +R − kT R2 

3. 
kT R
1− R 

− kT R 4. 
−kT R

1− R − kT R2 

5. none of the above 



Check Yourself


Find the system function H = Do 
Di 

. 

+ k −T + R

R

Di Do
−

V

Replace accumulator with equivalent block diagram. 

+ k −T R
1−R

R

Di Do
−

−kT R
Do = 1−R 

2 = −kT R 
2
Di 1 + −kT R

1−R− kT R


1−R




Check Yourself


+ k −T + R

R

Di Do
−

V

Find the system function H = Do 
Di 

. 4 

1. 
kT R
1− R 

2. 
−kT R

1 +R − kT R2 

3. 
kT R
1− R 

− kT R 4. 
−kT R

1− R − kT R2 

5. none of the above 



√


Analyzing wallFinder: Poles


1 
Substitute for R in the system functional to find the poles. 

z 

Do −kT R −kT 1 −kT z = = z = 
Di 1−R− kT R2 1− z 

1 − kT 
z
1 
2 z2 − z − kT 

The poles are then the roots of the denominator. 

1 
(

1
)2


z = + kT 
2
± 

2 



Poles


Poles can be identified by expanding the system functional in partial 

fractions. 

Y b0 + b1R + b2R2 + b3R3 += · · · 
X 1 + a1R + a2R2 + a3R3 + · · · 

Factor denominator: 

Y b0 + b1R + b2R2 + b3R3 += · · · 
X (1− p0R)(1 − p1R)(1 − p2R)(1 − p3R) · · · 

Partial fractions: 

Y e0 e1 e2 
X 

=
1− p0R 

+
1− p1R 

+
1− p2R 

+ · · · + f0 + f1R + f2R2 + · · · 

The poles are pi for 0 ≤ i < n where n is the order of the denominator. 

One geometric mode pi
n arises from each factor of the denominator. 



√( (
 )

Feedback and Control: Poles


If kT is small, the poles are at z ≈ −kT and z ≈ 1 + kT .


z =
)2+ kT = 1

2 1± 
√

1 + 4kT ≈ (1± (1 + 2kT )) = 1 + kT, −kT 1
2

1 Re z

Im z
z-planekT ≈ 0

Pole near 0 generates fast response. 

Pole near 1 generates slow response. 

Slow mode (pole near 1) dominates the response. 

1
2

1
2±




Feedback and Control: Poles


As kT becomes more negative, the poles move toward each other


and collide at z =
 .
1
2 when kT = −
14

z = 1
2 ± 
√(1

2 
)2 + kT = 1

2 ± 
√(1

2 
)2 − 1

4 =
1
2 , 

1
2 

2
1 Re z

Im z
z-plane

kT = −1
4

Persistent responses decay. The system is stable. 



√ √ 

Feedback and Control: Poles


If kT < −1/4, the poles are complex. 

z = 1
2 ± 

(1
2 
)2 + kT = 1

2 ± j −kT − 
(1

2 
)2 

1 Re z

Im z
z-planekT = −1

Complex poles → oscillations. 



Same oscillation we saw earlier! 

Adding delay tends to destabilize control systems. 

di[n] = desiredFront
do[n] = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0



Check Yourself


1 Re z

Im z
z-planekT = −1

What is the period of the oscillation? 

1. 1 2. 2 3. 3 

4. 4 5. 6 0. none of above 



Check Yourself 

1 
p0 = 2

± j 

1 Re z

Im z
z-planekT = −1

√
3 

2 
= e±jπ/3 

n = e±jπn/3 p0 

e±j0π/3 , e±jπ/3 , e±j2π/3 , e±j3π/3 , e±j4π/3 , e±j5π/3 , e±j6π/3 ︸ ︷︷ ︸ ︸ ︷︷ ︸ 
1 e±j2π=1 



Check Yourself


1 Re z

Im z
z-planekT = −1

What is the period of the oscillation? 5 

1. 1 2. 2 3. 3 

4. 4 5. 6 0. none of above 



Feedback and Control: Poles


The closed-loop poles depend on the gain. 

1 Re z

Im z
z-plane

If kT : 0→ −∞: then z1, z2 : 0, 1→ 1 
2 , 

1 
2 → 1 

2 ± j∞ 



Check Yourself 

1 Re z

Im z
z-plane

closed-loop poles

1
2
±

√(
1
2

)2
+ kT

Find kT for fastest response. 

1. 0 2. −1
4 3. −1

2 
4. −1 5. −∞ 0. none of above 



Check Yourself


z = 1 
2
± 

√(
1 
2 

)2 
+ kT 

1 
The dominant pole always has a magnitude that is ≥ 

2
. 

1 
It is smallest when there is a double pole at z =

2
. 

1 
Therefore, kT = −

4
. 



Check Yourself 

1 Re z

Im z
z-plane

closed-loop poles

1
2
±

√(
1
2

)2
+ kT

Find kT for fastest response. 2 

1. 0 2. −1
4 3. −1

2 
4. −1 5. −∞ 0. none of above 



1 Re z

Im z

1 Re z

Im z

Destabilizing Effect of Delay


Adding delay in the feedback loop makes it more difficult to stabilize.


Ideal sensor: ds[n] = do[n]


More realistic sensor (with delay): ds[n] = do[n − 1]


Fastest response without delay: single pole at z = 0. 
1 

Fastest response with delay: double pole at z =
2
. much slower! 



Destabilizing Effect of Delay


Adding more delay in the feedback loop is even worse. 

More realistic sensor (with delay): ds[n] = do[n − 1] 

Even more delay: ds[n] = do[n − 2] 

1 Re z

Im z

2
1 Re z

Im z

Fastest response with delay: double pole at z = 
2
. 

1 

Fastest response with more delay: double pole at z = 0.682. 

even slower → 



Check Yourself


R R R+X Y

How many of the following statements are true? 

1. This system has 3 poles. 

2. unit-sample response is the sum of 3 geometric sequences. 

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

5. One of the poles is at z = 1. 



Check Yourself


R R R+X Y

How many of the following statements are true? 4 

1. This system has 3 poles. 

2. unit-sample response is the sum of 3 geometric sequences. 

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . . 

5. One of the poles is at z = 1. 



Designing Control Systems: Summary


System Functions provide a convenient summary of information that


is important for designing control systems.


The long-term response of a system is determined by its dominant


pole — i.e., the pole with the largest magnitude.


A system is unstable if the magnitude of its dominant pole is > 1.


A system is stable if the magnitude of its dominant pole is < 1.


Delays tend to decrease the stability of a feedback system.
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