
Software Lab 5 6.01 – Fall 2011
System Functions

Goals: Study properties of linear time-invariant systems, by developing softw
modules for their system functions. Specifically, we:
• Implement a SystemFunction class for representing LTI system fu

tions as ratios of polynomials in R.
• Develop operations for combining system functions.

are

nc­

1 Setup

Using your own laptop
• Be sure you have the 6.01 software libraries

• Download and unzip swLab05.zip into a convenient folder (e.g., ~/Desktop/6.01/swLab05).

2 System Function Class

Objective: Implement the python SystemFunction class for representing system
functions, and determining basic properties of the system, based on its
poles.

Resources:
• Examples showing the typical use of this class (in Section 4 of this

handout)
• Section 5 of the course notes.
• Documentation for the sf module.
• sfSkeleton.py: template for developing your SystemFunction class.
• swLabs05Work.py: template for working with the SystemFunction

class.

installed.

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].

1

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html

Software Lab 5	 6.01 Fall 2011

A LTI system may be represented in terms of its system function, which is given by a ratio of
polynomials in R (the “Right shift” operator, a unit delay). We can model this in Python with a
SystemFunction class which has the following methods:
•	 __init__(self, numeratorPoly, denominatorPoly): takes two instances of the

Polynomial class as input and stores them in this SystemFunction instance as the attributes
numerator and denominator.

•	 poles(self): returns a list of the poles of the system. Remember that the poles are the roots
of the polynomial in z, where z = 1/R.

•	 poleMagnitudes(self): returns a list of the magnitudes of the poles of the system. The
magnitude of a real pole is simply its absolute value. The magnitude of a complex pole is the
square root of the sum of the squares of its real and imaginary parts. The abs function in
Python does the appropriate computation for both types.

•	 dominantPole(self): returns one of the poles with greatest magnitude. If two or more poles
have the same greatest magnitude, then any of these poles may be returned.

Detailed guidance:

Step 1.	 Edit sfSkeleton.py to contain your implementation of these methods. You can test it using
swLab05Work.py, which will load your sfSkeleton.py. We have set up swLab05Work.py to
import your definitions from sfSkeleton.py as sf, so that the examples match those in Section 4.
Note that swLab05Work.py contains test cases for all of the parts of this lab, so if you run the whole
file, you will get errors involving functions that you have not yet written.

Hints and cautions
•	 To create a Polynomial, use poly.Polynomial([...])
•	 None of the operations that you implement should change any of their arguments. Be very

careful of list operations that modify the input lists; e.g., x.append, x.insert and x.reverse.
•	 If you have a list bound to the variable x, then x.reverse() reverses the order of the elements

of the list x. If you want to avoid affecting the original x you need to copy the list first, for
example, by doing y = x[:]. Note that y = x does not copy the list, it simply creates a new
name for the same list.

•	 You might want to use the procedure util.argmax(l, f), which takes as input a list l and a
procedure f that can take an element of l as input and return a numerical score as ouput. The
result is the element of l for which f outputs the highest score.

Wk.5.1.1 Once you have debugged your code in Idle, paste it into this tutor problem,
check it, and submit it.

3 Combining System Functions

Objective: Develop two basic operations, Cascade and FeedbackSubtract, for com­
bining system functions, analogous to operations we saw for state ma­
chines.

2

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/poly.Polynomial-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/util-module.html#argmax

Software Lab 5	 6.01 Fall 2011

Step 2.

Wk.5.1.2 Get practice with cascade combination of system functions.

Step 3.	 In sfSkeleton.py, implement the procedure Cascade(sf1, sf2), which takes two instances
of the SystemFunction class and returns a new instance of that class that represents the cascade
composition of the input systems. Although this is a procedure and not a class, we capitalize the name
by analogy with the sm.Cascade class.

Wk.5.1.3 Once you have debugged your code in Idle, paste it into this tutor problem,
check it, and submit it.

Step 4.

Wk.5.1.4 Get practice with feedback-subtract combination of system functions.

Step 5.	 In sfSkeleton.py, implement the procedure FeedbackSubtract(sf1, sf2), which takes two
instances of the SystemFunction class and returns a new instance of that class that represents
the feedback subtract composition of the input systems. Although this is a procedure and not a class,
we capitalize the name by analogy with the sm.FeedbackSubtract class.

Wk.5.1.5 Once you have debugged your code in Idle, paste it into this tutor problem,
check it, and submit it.

4 Examples
These examples, drawn from the notes, are included in swLab05Work.py.
Real poles:

>>> s1 =	 sf.SystemFunction(poly.Polynomial([1]),
poly.Polynomial([0.63, -1.6, 1]))

>>> print s1
SF(1.000/0.630 R**2 + -1.600R + 1.000)
>>> s1.poles()
[0.90000000000000069, 0.69999999999999951]
>>> s1.poleMagnitudes()
[0.90000000000000069, 0.69999999999999951]
>>> s1.dominantPole()
0.90000000000000069

Complex poles:

3

Software Lab 5 6.01 Fall 2011

>>> s2 = sf.SystemFunction(poly.Polynomial([1]),
poly.Polynomial([1.1, -1.9, 1]))

>>> print s2
SF(1.000/1.100 R**2 + -1.900R + 1.000)
>>> s2.poles()
[(0.94999999999999996+0.44440972086577957j), (0.94999999999999996-0.44440972086577957j)]
>>> s2.poleMagnitudes()
[1.0488088481701516, 1.0488088481701516]
>>> s2.dominantPole()
(0.94999999999999996+0.44440972086577957j)

Driving to a wall example from the notes:

>>> T = 0.1
>>> k = -2.0
>>> controller = sf.SystemFunction(poly.Polynomial([k]),

poly.Polynomial([1]))
>>> print controller
SF(-2.000/1.000)
>>> plant = sf.SystemFunction(poly.Polynomial([-T, 0]),

poly.Polynomial([-1, 1]))
>>> print plant
SF(-0.100R/-1.000R + 1.000)
>>> controllerAndPlant = sf.Cascade(controller, plant)
>>> print controllerAndPlant
SF(0.200R/-1.000R + 1.000)
>>> wall = sf.FeedbackSubtract(controllerAndPlant)
>>> print wall
SF(0.200R/-0.800R + 1.000)
>>> wall.poles()
[0.80000000000000004]

4

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

