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6.01: Introduction to EECS I 

Characterizing System Performance 

March 1, 2011 

Midterm Examination #1 

Time: Tuesday, March 8, 7:30 pm to 9:30 pm 

Location: Walker Memorial (if last name starts with A-M) 

10-250 (if last name starts with N-Z) 

Coverage: Everything up to and including Design Lab 5. 

You may refer to any printed materials that you bring to exam.


You may not use computers or phones.


No software lab in week 6.


The Signals and Systems Abstraction 

Describe a system (physical, mathematical, or computational) by 

the way it transforms an input signal into an output signal. 

system
signal 

in 
signal 
out 

Today’s goals: use signals and systems approach 

– to gain insight into how feedback works. 

– to characterize the responses of systems quantitatively. 

Feedback and Control 

Feedback is pervasive in natural and artificial systems. 

p 
V 

Turn steering wheel to stay centered in the lane. 

car driver
desired 

position 
actual 
position 

Feedback and Control 

Feedback is useful for regulating a system’s behavior, as when a 

thermostat regulates the temperature of a house. 

thermostatdesired 
temperature 

actual 
temperature 

heating 
system 

Feedback and Control 

Concentration of glucose in blood is highly regulated and remains 

nearly constant despite episodic ingestion and use. 

food 
digestive 
system 

glucose circulatory 
system 

glucose 

insulin 
cells & 
tissues 

glucose insulin 

pancreas 

(β cells) 

+ body 
− 

food glucose 
concentration 

pancreas 

(β cells) 
insulin 

concentration 
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Feedback and Control 

Motor control relies on feedback from pressure sensors in the skin 

as well as proprioceptors in muscles, tendons, and joints. 

Try building a robotic hand to unscrew a lightbulb: 

Shadow Dexterous Robot Hand 

(Greenhill and Elias) 

... wouldn’t be possible without feedback! 

Example from Design Lab 4: WallFinder 

Control the robot to move to desired distance from a wall. 

di[n] =  desired distance (input) 
do[n] =  current distance (output) 

Think about this system as having 3 parts: 

+ controller plant 

sensor 

di[n] do[n] − 

Example from Design Lab 4: WallFinder Check Yourself 

Control the robot to move to desired distance from a wall. 

e[n] v[n]
di[n] + controller plant 

sensor 

do[n] − 

ds[n] 

Controller (brain) – sets velocity ∝ error: 

v[n] = ke[n] = k di[n]− ds[n]
Plant (robot locomotion) – given v[n], drives to new position: 

do[n] = do[n − 1]− Tv[n − 1] 

Sensor (sonars) – reports output, but also introduces delay: 

ds[n] = do[n − 1] 

Solving difference equations. 

v[n] = k 
� 
di[n]− ds[n]

� 
do[n] = do[n − 1]− Tv[n − 1] 
ds[n] = do[n − 1] 

How many equations? How many unknowns? 

1. 3 equations; 3 unknowns 

2. 3 equations; 4 unknowns 

3. 4 equations; 4 unknowns 

4. 3 equations; 6 unknowns 

5. none of the above 

Hint: k and T are fixed (constant) parameters. 

System Functional 

We can express the relation between the (known) input and (un­

known) output using the system functional H. 

HX Y 

The system functional H is an operator. 

Applying H to X yields Y . 

Y = HX  

It is also convenient to think of H as a ratio: 

H = 
Y 
X 

because H can be expressed as a ratio of polynomials in R. 

Check Yourself 

Determine the system functional for the WallFinder system. 

HDi Do 

V = kE = k 
� 
Di −Ds 

� 
Do = RDo −RTV  

Ds = RDo 

Find the system functional H = 
Do 
Di 

. 

1. 
kTR 
1−R  

2. 
−kTR 

1 +R+ kTR2 

3. 
−kTR 

1−R− kTR2 4. 
−kTR 
1−R  

+ kT 

5. none of above 
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Courtesy of the Shadow Robot Company. Used with permission.



y[0] = x[0] + p0y[−1]= 1 + 0 = 1
y[1] = x[1] + p0y[0] = 0 + p0 = p0
y[2] = x[2] + p0y[1] = 0 + p20 = p20
. . .
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Example from Design Lab 4: WallFinder 

We saw in lab that the behavior of WallFinder depends on kT . 

n 

kT = −0.3 

do[n] 

n 

kT = −0.6 

n 

kT = −0.9 

We would like to relate these behaviors to the system functional H, 

so that we can design well-behaved control systems. 

Feedback 

Consider a simpler system with feedback. 

+ 

Rp0 

x[n] y[n] 

−1  0  1 2 3  4 
n 

x[n] = δ[n] 

−1 0  1 2 3  4 
n 

y[n] 

Find y[n] given x[n] = δ[n]: y[n] = x[n] + p0y[n − 1] 

Feedback 

Alternatively, we can think about signals instead of samples. 

+ 

Rp0 

X Y 

Y = X + p0RY 

(1− p0R)Y = X 

H = 
Y 
X 

= 
1 

1− p0R 

Feedback 

The reciprocal of 1− p0R can be evaluated using synthetic division. 

1 +p0R +p02R2 +p03R3 + · · ·  
1− p0R 1 

1 −p0R 

p0R 

p0R −p02R2 

p0
2R2 

p0
2R2 −p03R3 

p0
3R3 

p0
3R3 −p04R4 

· · ·  
Therefore 

1 = 1 + p0R+ p02R2 + p03R3 + p04R4 + · · ·  1− p0R 
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Feedback: Cyclic Signal Flow Paths 

Feedback implies cyclic signal flow paths. 

x[n] = δ[n] 

Delay 

+ 

p0 

X Y 

Y 
X 

= 
1 

1− p0R 
= 1 + p0R+ p 20R2 + p 30R3 + p 40R4 + · · ·  

Cyclic signal flow paths → persistent responses to transient inputs. 

Cyclic and Acyclic Signal Flow Paths 

Block diagrams help visualize feedback as cyclic signal flow paths. 

R 

R 

−2 

+X Y 

Delay 

+X Y 

acyclic cyclic 

Acyclic: no cycles in any path from input to output 

Cyclic: at least one cycle 
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Geometric Growth Check Yourself 

How many of the following systems are cyclic? 

R 

R+ +X Y + + 

R R 

X Y 

R 

+ +X Y + + 

R R 

X Y 

If traversing the cycle decreases or increases the magnitude of the 

signal, then the output will decay or grow, respectively. 

X 

Delay 

+ Y X 

Delay 

+ Y 

0.5 1.2 

y[n] y[n] 

n n 
−1 0  1 2 3  4 −1 0  1 2 3  4 

n n→ geometric sequences: y[n] = (0.5) and (1.2) for n ≥ 0. 

Geometric Growth 

These system responses can be characterized by a single number 

(the pole), which is the base of the geometric sequence. 

Delay 

+ 

p0 

X Y 

y[n] =  

� 
pn0 , if n >= 0; 
0, otherwise. 

−1  0  1 2 3  4 
n 

y[n] 

−1  0  1 2 3  4 
n 

y[n] 

−1 0  1 2 3  4 
n 

y[n] 

p0 = 0.5 p0 = 1  p0 = 1.2 

Check Yourself 

What value of p0 represents the signal below? 

y[n] 

1. p0 = 0.5 

2. p0 = −0.5 

3. p0 = 0.25 interspersed with p0 = −0.25 

4. none of the above 

Geometric Growth 

The value of p0 determines the rate of growth. 

y[n] y[n] y[n] y[n] 

−1 0 1 
z 

p0 > 1: magnitude diverges monotonically 

0 < p0 < 1: magnitude converges monotonically 

−1 < p0 < 0: magnitude converges, alternating sign 

p0 < −1: magnitude diverges, alternating sign 

Second-Order Systems 

The unit-sample response of more complicated cyclic systems is 

more complicated. 

R 

R 

1.6 

−0.63 

+X Y 
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Second-Order Systems 

The unit-sample response of more complicated cyclic systems is 

more complicated. 

R 

R 

1.6 

−0.63 

+X Y 

−1  0  1 2 3  4 5 6  7 8 
n 

y[n] 

Not geometric. This response grows then decays. 

Second-Order Systems: Equivalent forms 

Factor the operator expression to break the system into two simpler 

systems (divide and conquer). 

R 

R 

1.6 

−0.63 

+X Y 

Y = X + 1.6RY − 0.63R2Y 

(1 − 1.6R + 0.63R2) Y = X 

(1 − 0.7R)(1 − 0.9R) Y = X 

Second-Order Systems: Equivalent forms 

Factored form corresponds to a cascade of simpler systems. 

(1 − 0.7R)(1 − 0.9R) Y = X 

+ 

0.7 R 

+ 

0.9 R 

X Y 
Y1 

(1 − 0.7R) Y1 = X (1 − 0.9R) Y = Y1 

+ 

0.9 R 

+ 

0.7 R 

X Y 
Y2 

(1 − 0.9R) Y2 = X (1 − 0.7R) Y = Y2 

The order doesn’t matter (if systems initially at rest). 

Second-Order Systems: Equivalent forms 

This system functional can also be written as a sum of simpler parts. 

R 

R 

1.6 

−0.63 

+X Y 

Y = X + 1.6RY − 0.63R2Y 

(1 − 1.6R + 0.63R2) Y = X 

(1 − 0.9R)(1 − 0.7R) Y = X 

Y 
X 

= 
1 

1−1.6R + 0.63R2 = 
1 

(1−0.9R)(1−0.7R) 
= 

4.5 
1−0.9R 

− 
3.5 

1−0.7R 

Second-Order Systems: Equivalent forms 

The unit-sample response is the sum of geometric sequences. 

Y 4.5 3.5 
X 

= 1 − 0.9R − 1 − 0.7R 

Second-Order Systems: Equivalent forms 

The unit-sample response is the sum of geometric sequences. 

−1  0  1 2 3  4 5 6  7 8 
n 

y1[n] = 0.7n for n ≥ 0 

−1  0  1 2 3  4 5 6  7 8 
n 

y2[n] = 0.9n for n ≥ 0 

−1  0  1 2 3  4 5 6  7 8 
n 

y[n] = 4.5(0.9)n − 3.5(0.7)n for n ≥ 0 

X Y+ 

0.9 R 

4.5 + 

−3.5 

R0.7 

+ 

Y1 

Y2 

If x[n] =  δ[n] then y1[n] = 0.9n and y2[n] = 0.7n for n ≥ 0.


Thus, y[n] = 4.5(0.9)n − 3.5(0.7)n for n ≥ 0.


It would be difficult (or impossible) to derive this representation


directly from the original block diagram or difference equation. 
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Higher-Order Systems 

Systems that can be represented by linear difference equations with 

constant coefficients have operator representations that are the ratio 

of polynomials in R. 

y[n] +  a1y[n − 1] + a2y[n − 2] + a3y[n − 3] + · · · 

= b0x[n] +  b1x[n − 1] + b2x[n − 2] + b3x[n − 3] + · · · 


(1 + a1R+ a2R2 + a3R3 + · · ·) Y = (b0 + b1R+ b2R2 + b3R3 + · · ·) X 

Y b0 + b1R+ b2R2 + b3R3 + · · ·  = 
X 1 +  a1R+ a2R2 + a3R3 + · · ·  

Rational Polynomial: ratio of two polynomials 

Poles 

Alternatively, replace each R in the system functional by 1/z. 
Then the poles are the roots of the denominator polynomial in z. 

Start with system functional: 

Y 1 1 1 = = = 
X 1 − 1.6R+0.63R2 (1−p0R)(1−p1R) (1−0.7R) (1−0.9R) � �� � � �� � 

p0=0.7 p1=0.9 

Substitute 1/z for R and find roots of denominator polynomial in z: 

Y 1 z2 z2 
= = = 

X 1.6 0.63 z2 −1.6z+0.63 (z−0.7) (z−0.9)1 − + 2 � �� � � �� � 
z z

z0=0.7 z1=0.9 

Poles are at 0.7 and 0.9 

Complex Poles 

What if a pole has a non-zero imaginary part? 

Example: 

Y 1 = 
X 1 −R+ R2


1 z2

= = 

1 − 1 
z + 

z
1 
2 z2 − z + 1  

√
Poles are z = 1

2 ± 2
3 j = e±jπ/3 .


What are the implications of complex poles?
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Poles 

Poles can be identified by expanding the system functional in partial 

fractions. 

Y b0 + b1R+ b2R2 + b3R3 + · · ·  = 
X 1 +  a1R+ a2R2 + a3R3 + · · ·  

Factor denominator: 

Y b0 + b1R+ b2R2 + b3R3 + · · ·  = 
X (1 − p0R)(1 − p1R)(1 − p2R)(1 − p3R) · · ·  

Partial fractions: 

Y e0 e1 e2= + + + · · ·+ f0 + f1R+ f2R2 + · · ·  
X 1 − p0R 1 − p1R 1 − p2R 

The poles are pi for 0 ≤ i < n  where n is the order of the denominator. 

One geometric mode pi
n arises from each factor of the denominator. 

Check Yourself 

Consider the system described by 

y[n] =  − 
1 
4y[n − 1] + 

1 
8y[n − 2] + x[n − 1] − 

1 
2x[n − 2] 

How many of the following are true? 

1. The unit sample response converges to zero. 

2. There are poles at z = 1 
2 and z = 1 

4 . 

3. There is a pole at z = 1 
2 . 

4. There are two poles. 

5. None of the above 

Complex Poles 

Partial fractions work even when the poles are complex. 

Y 
X 

= 
1 

1 − e jπ/3R 
× 

1 

1 − e−jπ/3R 
= 

1 

j 
√

3 

� 
e jπ/3 

1 − e jπ/3R 
− 

e−jπ/3 

1 − e−jπ/3R 

� 

There are two fundamental modes (both geometric sequences): 

e jnπ/3 = cos(nπ/3) + j sin(nπ/3) and e −jnπ/3 = cos(nπ/3) − j sin(nπ/3) 

n n 

6
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Complex Roots Complex Poles 

Complex modes are easier to visualize in the complex plane. 

e jnπ/3 = cos(nπ/3) + j sin(nπ/3) 

Re 

Im 

e j0π/3 

e j1π/3e j2π/3 

e j3π/3 

e j4π/3 e j5π/3 

n 

e−jnπ/3 = cos(nπ/3) − j sin(nπ/3) 

Re 

Im 

e j0π/3 

e j5π/3e j4π/3 

e j3π/3 

e j2π/3 e j1π/3 

n 

Difference equations that represent physical systems (e.g., popula­

tion growth, bank accounts, etc.) have real-valued coefficients. 

Bank account with interest: 

y[n] = (1 +  r)y[n − 1] + x[n] 

wallFinder: 

do[n] =  do[n − 1] + kTdo[n − 2] − kTdi[n − 1] 

Difference equations with real-valued coefficients generate real-

valued outputs from real-valued inputs. 

Complex Roots Complex Roots 

If p is a root of a polynomial with constant real-valued coefficients,


then its complex-conjugate p ∗ is also a root.


Proof. Let D(z) represent a polynomial in z with constant real-


valued coefficients.


If p is a root of D(z) then D(p) = 0.


Since all of the coefficients are real-valued,


D(p ∗) = (D(p))∗ = 0∗ = 0. 

Thus p ∗ is also a root. 

If we pair the factors corresponding to complex-conjugate roots, the 

resulting polynomial has real-valued coefficients. 

Y 1 1 1 
H = = = ×


X 1 −R+ R2 1 − e jπ/3R 1 − e−jπ/3R


1 e jπ/3 e−jπ/3 
= √ − 
j 3 1 − e jπ/3R 1 − e−jπ/3R 

y[n] =  √1 
e j(n+1)π/3 − e −j(n+1)π/3 = √2 sin 

(n + 1)π

j 3 3 3


y[n]


1 

n 

−1 

Complex Roots 

Furthermore, the period of the resulting real-valued signal is the 

same as the periods of the complex-valued signals. 

Re 

Im 

e j0π/3 

e j1π/3e j2π/3 

e j3π/3 

e j4π/3 e j5π/3 

n 

1 

−1 

n 

y[n] 

Thus the period of the response is equal to the number of steps 

required to go around the unit circle (here 6). 

Check Yourself 

Output of a system with poles at z = re ±jΩ . 

y[n] 

n 

Which statement is true? 

1. r <  0.5 and Ω ≈ 0.5 

2. 0.5 < r  <  1 and Ω ≈ 0.5 

3. r <  0.5 and Ω ≈ 0.08 

4. 0.5 < r  <  1 and Ω ≈ 0.08 

5. none of the above 
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Fibonacci’s Bunnies 

We can think about the Fibonacci numbers as the output of a 

discrete-time system. 

‘How many pairs of rabbits can be produced from a single pair in a 

year if it is supposed that every month each pair begets a new pair 

which from the second month on becomes productive?’ 

Difference equation model: 

y[n] = x[n] + y[n − 1] + y[n − 2] 

What does the input x[n] represent? 

Fibonacci’s Bunnies 

Check Yourself 

What are the poles of the Fibonacci system? 

y[n] = x[n] + y[n − 1] + y[n − 2] 

Lecture 5 March 1, 2011 

Fibonacci’s Bunnies 

We can think about the Fibonacci numbers as the output of a 

discrete-time system. 

‘How many pairs of rabbits can be produced from a single pair in a 

year if it is supposed that every month each pair begets a new pair 

which from the second month on becomes productive?’ 

Difference equation model: 

y[n] = x[n] + y[n − 1] + y[n − 2] 

If the system is started “at rest” and x[n] = δ[n], then 

y[0] = 1  

y[1] = 1  

y[2] = 2  

y[3] = 3  

Fibonacci’s Bunnies 

Summary 

Feedback → cyclic signal flow paths.


Cyclic signal flow paths → persistent responses to transient inputs.


We can characterize persistent responses with poles.


Poles provide a way to characterize the behavior of a system in terms


of a mathematical description as a system function.
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Summary 

Feedback → cyclic signal flow paths.


Cyclic signal flow paths → persistent responses to transient inputs.


We can characterize persistent responses with poles.


Poles provide a way to characterize the behavior of a system in terms


of a mathematical description as a system function.


Powerful representations (here polynomials) 

→ powerful abstractions (e.g., poles) 

PCAP ! 
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